SOUTENIR

4th International Conference on Innovation in IoT, Robotics and Automation (IIRA 4.0)

Organized By Department of CS&E

MORADABAD INSTITUTE OF TECHNOLOGY Ram Ganga Vihar Phase-2, Moradabad (UP), 244001 India

4th International Conference on Innovation in IoT, Robotics and Automation (IIRA 4.0)

List of Committees

Chief Patrons

Sh. Y. P. Gupta, Chairman MITGI

Sh. Adarsh Kumar Agarwal, Secretary MITGI

Patrons

Sh. Arvind Kumar Goel, Vice Chairman MITGI

Sh. Sudhir Gupta, Founder Chairman MITGI

Sh. Neeraj Kumar Agarwal, Treasurer MITGI

Sh. Anil Kumar Agarwal, Joint Secretary MITGI

Sh. Pradeep Jain, Vice Chairman MITGI

Prof. (Dr.) Rohit Garg, Director MIT

Prof. (Dr.) Manish Saxena, Dean R & D, MIT

Organizing Committee

Chairman: Prof. (Dr.) Manish Gupta Co-Chairman: Dr. Himanshu Agarwal

Organizing Secretary: Prof. (Dr.) Rajeev Kumar

Organizing Secretary: Mr. Amit Saxena

Conference Chair

Mr. Vikas Kumar

Dr. Neelaksh Sheel

Dr. Manoj Kumar Singh

Dr. Himanshu Sharma

Technical Program Committee

Dr. Saurabh Srivastava (Convener)

Mr. Anurag Malik

Mr. Praful Saxena

Mr. Mohd. Salman

Website, Publicity Committee

Dr. Neelaksh Sheel (Convener)

Mr. Vikas Bhatnagar

Ms. Richa Saxena

Ms. Yukti Varshney

Ms. Neha Verma

Ms. Meenakshi Saini

Photography & Videography Committee

Mr. Anurag Malik (Convener)

Mr. Shivendra Pratap Singh

Mr. Arjun

Media Coverage & Press Release Committee

Mr. Rakesh Rana (Convener)

Mr. Abhinav Gupta

Mr. Ravish Kumar Dubey

Poster/ Banner/ Brochure/ Leaflet/Certificate Designing Committee

Mr. Prabal Bhatnagar (Convener)

Ms. Salma Bee

Review Committee/ Editorial Board

Dr. Saurabh Srivastava (Convener)

Dr. Himanshu Agarwal

Dr. Himanshu Sharma

Mr. Anurag Malik

Mr. Praful Saxena

Mohd. Salman

Ms. Prachi Gupta

Ms. Kanchan

Ms. Richa Saxena

Mr. Mohd. Ilyas

Ms. Prachi Agarwal

Mr. Ajeet Singh

Mr. Amit Kumar

Ms. Ruchika Gupta

Ms. Deepali Agarwal

Ms. Anu Sharma

Ms. Bindu Rani

Mr. Mahendra Singh Sagar

Mr. Vinay Kr Pant

Ms. Yukti Varshney

Mr. Varun Agarwal

Mr. Nitin Kr Sharma

Registration & Certificate Writing Committee

Mr. Zubair Iqbal (Convener)

Ms. Deepali Agarwal

Mr. Rohit Kr Singh

Ms. Shiwani Agarwal

Ms. Meenakshi Yadav

Ms. Yukti Varshney

Ms. Neha Verma

Ms. Salma Bee

Welcome & Stage Committee (Inauguration, Valedictory, Technical Sessions)

Ms. Neha Gupta (Convener)

Ms. Ruchika Gupta

Mr. Vipin Saini

Decoration, Gift, Memento, Bouquet

Ms. Priyanka Goel (Convener)

Ms. Sakshi Singh

Mr. Mahendra Singh Sagar

Ms. Neha Chauhan

Proceeding Publication Committee

Mr. Sanjeev Gupta (Convener)

Mr. Vikas Bhatnagar

Mr. Mohd. Ilyas

Ms. Anu Sharma

Ms. Yukti Varshney

Mr. Vinay Kumar Pant

Paper Presentation Committee

Mohd. Ilyas (Convener)

Ms. Kanchan

Ms. Meenakshi Yadav

Mr. Mahendra Singh Sagar

Fooding & Lodging Committee

Dr. Himanshu Sharma (Convener)

Mr. Pavan Kumar Singhal

Mr. Puneet Kumar

Mr. Gaurav Trivedi

Mr. Shailendra Sharma

Mr. Rajveer

Technical Setup Committee

Dr. Manoj Kumar Singh (Convener)

Mr. Pradeep Kumar Singh

Mr. Bhrampal Saini

Mr. Tara Chand

Venue & General Arrangements

Ms. Neha Gupta

Ms. Priyanka Goel

Mr. Rajesh Sharma

Mr. Sanjay Sharma

Mr. Sumit

Preface

We take this opportunity to welcome you all to the Souvenir of the fourth International Conference on Innovation in IoT, Robotics and Automation (IIRA-4.0).

The objective was to bring the eminent academicians, scientists, researchers, industrialists, technocrats, government representatives, social visionaries and experts from all strata of society, under one roof, to explore the new horizons, of innovative technology to identify opportunities and defining the path forward. This new path should eliminate isolation, discourage redundant efforts and promote scientific progress aimed to accelerate India's overall growth to prominence on the international front and contribute effectively to realize and achieve the India 2024 mission of being a Development Nation. The conference will feature online/offline paper presentation sessions, invited talks, keynote addresses and panel discussions. Conference has attracted researchers and practitioners from academia, industry and government agencies, in order to exchange ideas and share their valuable experiences.

We are grateful to a number of people without which we would not have been able to successfully organize this mega event, in such a short period of record time. On behalf of the Organizing Committee, we thank all esteemed authors for having shown confidence in us and considered IIRA-4.0 a platform to share their work. We wish to express our gratitude to our focused and dedicated team of Convener, Co-conveners, members of the Advisory Committee, Organizing Committee, Technical Committee and Local Organizing Committee and finally our students for being a great source of strength to us in making this event successful.

We consider ourselves fortunate to get such a dedicated and ever supporting team.

We are personally thankful to our Director, Prof. (Dr.) Rohit Garg, who was always a constant source of technical guidance, as and when we needed.

We also take this opportunity to thank various organizations which have sponsored and collaborated with us in organizing this conference and meeting the financial constraints.

Finally, we are thankful to one and all, who have contributed directly or indirectly in making this conference successful.

Last but not the least, we take this opportunity to give the credit of successfully bringing out this Souvenir to our team, one and all, and personally own the responsibility of all the errors, deficiency and shortcomings.

In the last, we are thankful to Almighty God for giving us strength in successful organization of this conference.

Dr. Rajeev KumarOrganizing Secretary
IIR A-4.0

Amit Saxena
Organizing Secretary
IIRA-4.0

Contents

Committee ii-vi

Preface

Contents viii-x

Messages xi- xix

S.No.	ArticleTitle	Corresponding Author's Name
AIP 01	Assessment of AI Companies Operational Performance in India	Dr. Shanu Singh
AIP 02	Drone-Assisted Air Quality Monitoring in Urban Areas	Nikhil Aggarwal
AIP 03	MQTT Enabled Smart Parking Management System	Nikhil Aggarwal
AIP 04	An Exploration of Clustering Techniques for Customer Behaviour	Vikrant
AIP 05	Impact of Social Media Solutions on Natural Disaster Management: Enhancing Communication, Coordination, and Resilience	Vinay Kumar Pant
AIP 06	Statistical Techniques and a Machine Learning Model for Predicting COVID-19 Evolution	Anu Sharma
AIP 07	Hybrid CNN-RNN Model For Plant Leaf Disease Detection	Deepti Aggarwal
AIP 08	Developing Internet of Things (IoT) Based Smart Government Model for Nepal	Sudan Jha
AIP 09	A Graphical Password Authentication Using Blockchain	Atharva Kothawade
AIP 10	Overview of IoT Architecture, Networking Technologies and it's Applications	Gopal Gawali
AIP 11	INASoc: An Improved Hybrid Algorithm for Social Network Analysis	Anu Sharma
AIP 12	IoT-BASED SHREWD CROP FIELD MPA SYSTEM	Himanshu AGARWAL
AIP 13	Advancements in Chikungunya Detection: Integrating Machine Learning with Image Classification and Early Identification	Pawan Kumar Badhan
AIP 14	Exploring The 6G Era Through Artificial Intelligence and Machine Learning	Ekta Bhaggi
AIP 15	Implementation of Adaptive Cloud Security Framework for Cloud Computing Monitoring System Applications	Tarun Kumar Vashishth
AIP 16	Empowering Education and Research: Unveiling the Dynamic Influence of Digital Libraries and Information Centres	Chandra Bhushan
AIP 17	Navigating the Digital Mirage: A Survey on Detecting and Mitigating Fake Consumer Reviews	Gauri Tripathi
AIP 18	Advancements In Cartoonification Techniques: A Comprehensive Review Of Gan-Based Algorithms and Comparative Analysis	Sonam Gupta

AIP 19	Forecast stock using LSTM	Shivam Rawat
AIP 20	Assessment Of Groundwater Quality For The Intent Of Irrigation In Cuttack Using Machine Learning	Dr. Ekata Gupta
AIP 21	Advances in Deep Learning Techniques for Plant Disease Identification: A Comprehensive Survey	Mahesh Tiwari
AIP 22	Enhancement in Drone Technology with Payload, Sensors, and Frequency Spectrum Issues and Applications	Mohd Salman
AIP 23	An Exploratory Analysis of Diverse Methodologies in Sentiment Analysis: A Survey	Ashish Upadhyay
AIP 24	Sentiment Evolution On Social Media: An In- depth Study Using Naive Bayes for Twitter Sentiment Analysis	Nitin Thapliyal
AIP 25	Analyzing Intelligent Transport Systems: A Case Study of the Balasore Rail Disaster	Vikas Sharma
AIP 26	Comparative Investigation on Torque Requirement Analysis for 6 DOF Robotic Manipulator with Aluminium A380 and Magnesium AZ31B Materials	Raffik R
AIP 27	Machine Learning Based Methods for Driver Drowsiness Detection	Yagna Bhatt
AIP 28	IoT based Air Pollution Monitoring System for Moradabad City	Amit Saxena
AIP 29	Essentials of Life Long Learning for an Engineering Graduate	Kshitij Shinghal
AIP 30	Essentials of Ethics for an Engineering Graduate	Amit Saxena
AIP 31	Automated Door with Password-Based Lock	Monika Dhiman
AIP 32	DUO TONE MULTI-FREQUENCY MOBILE CONTROLLED ROBOT	Shweta Singh
AIP 33	Crop Prediction System Using Machine Learning	Prakhar kapoor
AIP 34	A Review on Machine Learning in Cryptography: Future Perspective and Application	Prateek Nayak
AIP 35	Smog Restoration of A Image Using Oblique Gradient Profile	Manish Kumar
AIP 36	IoT-Based Automated Paralysis Patients HealthCare System	A. Sakira Parveen
AIP 37	Contextually Aware Mental Health Chatbots: Pairwise Learning in NLP and LSTM for Enhanced Conversational Support	Bharat Tripathi
AIP 38	VisionVoice: An Image Captioning Web Application that Converts it to Audio for the Visually Impaired	Ashish Singh
AIP 39	A Comparative Analysis of Unsupervised Machine Learning Algorithms Using Heart Disease Data	Mohammad Alam
AIP 40	Comparative Torque Requirement Investigation for 6 DOF Industrial Robotic Manipulators: Relative Analysis using Magnesium AZ91D and AZ31B Alloys	Raffik R
AIP 41	Comparative Investigation for Design Optimization of 6 DOF Industrial Robotic Manipulator Drives - Torque Requirement Analysis using Magnesium AZ91D and Aluminium A380 Alloys	RaffiK R

AIP 42	Integration of Industrial Automation Tools with Human-Centric Approach for Enhancing Sustainable Manufacturing Processes in Industry 5.0	RaffiK R
AIP 43	Comparative Analysis of Apache Hadoop and Apache Spark for Business Intelligence	Mohammad Alam
AIP 44	Transformative Trends: The Impact of Artificial Intelligence (AI) On Modern Education	HIMANI GREWAL
AIP 45	Efficient Image Preprocessing Pipeline for Accurate Text Extraction using OCR and Pattern Matching	Kulvinder Singh
AIP 46	Hate Speech Detection using Machine Learning: An Ensemble Technique	Gurojaspreet Kaur
AIP 47	Decoding Emotions: LSTM-Based Sentiment Analysis for Movie Reviews and YouTube Comments	Sanjeev Gupta
AIP 48	Unveiling the Mysteries of Vedic Mathematics: A Comprehensive Study	Sachin Kumar Agrawal
AIP 49	Bio-Inspired Animal Mating Features: A Study in Evolutionary Adaptations	Neha Tyagi
AIP 50	Fuzzy Logic-Based Analysis of Student Behavior Patterns in Educational Environments	Pravesh Kumar Bansal
AIP 51	Deep Learning-based Multi-Modal Surveillance System	Ajeet Singh
AIP 52	Leaf Disease Detection Using Deep Learning	Mohammad Amaan
AIP 53	Obesity Classification and Prognosis Using Machine Learning	Nupa Ram Chauhan
AIP 54	Average of Objectives Method to Solve MOTP	Sachin Kumar Agrawal
AIP 55	Comparative Study of Supervised Machine Learning Techniques in Heart Disease Prediction: A Review	Amit Kumar
AIP 56	A Smart Protective Headgear for a Rider	Nikhil Aggarwal
AIP 57	Analyzing Consumer Behavior & Marketing Trends in Robo- Advisor Research: Bibliometric Strategic Insights	Rubel Amin
AIP 58	Sentimental Analysis Using Natural Language Processing	Dr. Sunil Kumar
AIP 59	PulseVisioGuard : Touchless Blood Pressure and Heart Rate Estimation	Deepti Aggarwal
AIP 60	Anonymizing Data to avoid Privacy Breach	Manish Gupta
AIP 61	Detection and Recognition of Handheld Armaments based on video surveillance using Deep Learning Technique	Neha Gupta
AIP 62	A Novel Machine Learning Hybrid Model for Heart Disease Risk Assessment	Saurabh Srivastava
AIP 63	A Transfer Learning Based Model for Brain Tumor Detection Using Magnetic Resonance Imaging	Saurabh Srivastava
AIP 64	An Analytical Study on Safety Measures Concerns in Cloud Computing Technology	Anjali Sharma

AIP 65	Netflix Stock Market Price Prediction	Raju Kumar
AIP 66	Cyberbullying Detection Using Machine Learning	Ajay Kumar Yadav
AIP 67	Empowering Edge Computing: The Critical Role of Blockchain in Cybersecurity Defense	Amit Saxena
AIP 68	The Evolution of Industry 5.0: Harnessing Artificial Intelligence and Communication Technology	Mahendra Singh
AIP 69	Fire Detection under Suspicious Activity Recognition in Video Surveillance using Deep Learning Algorithm	Neha Gupta
IJESET 01	Smart Parking And Green Charging	Annu Singh
IJESET 02	A Lightweight Machine Learning-Based Intrusion Detection System For Edge Computing	Vipin Kumar
IJESET 03	Smartspray: Autonomous Pesticide Spraying Drone For Precision Farming	Abhay Pratap Singh
IJESET 04	E-Clinic :IoT Based Virtual Opd For Remote Consultation	Shailesh Khaparkar
IJESET 05	Gesture Controlled Computer System	Himanshu Maurya
IJESET 06	Weapon Detection System Using Deep Learning Algorithm	Shaurya Sarswat
IJESET 07	Sign Language Detection System	Prakhar Kapoor
IJESET 08	A Voice Assisted Traffic Sign Board Recognisation System: A Survey	Ishita Gupta
IJESET 09	Dine Scan: Automated Order Placing Software For Restaurants Using Qr Code, Order Management, And Billing Management	Aditya Agarwal
IJESET 10	System For Marking Attendance Through Facial Recognition Utilizing Opency	Amay Bhatnagar
IJESET 11	An Exploration Of Deep Learning For Medical Image Analysis	Varun Agarwal
IJESET 12	Safedrive Guardian: A Multi-Model Safety System	Ansh Raj Vardhan
IJESET 13	The Boat: A Smart Garbage Collection & Waste Technique Using IoT	Jhalak Bhardwaj
IJESET 14	Ecomentor Using Machine Learning	Anushka Gupta, Lakshya Gupta
IJESET 15	Content Moderation On Social Media Platform	Harsh Vardhan Singh
IJESET 16	AI Content Moderation Analysis	Harshit Saxena
IJESET 17	Meta Metrics: Web Analytics Prodigy	Yash Bhatnagar
IJESET 18	Truthguard	Vaibhav Malhotra
IJESET 19	Exploring A Healthcare Monitoring System For Advanced Digital Health By Using Iot	Devansh Kumar

IJESET 20	Traffic Rules Violation Detection And Challan Generation System	Neha Kataria
IJESET 21	E-Commerce Platform With Blockchain Payment Processing	Mayank Pandey
IJESET 22	The Effect Of Innovation Resistance And Face Recognition Payment System Features On Intention To Use	Mohd Salman
IJESET 23	Traffic Sign Board Recognisation And Voice Assisted System: Using Convolutional Neural Network	Prateek Singh
IJESET 24	A Review On Sentiment And Emotion Analysis From Social Media Text	Harihar Nath Verma
IJESET 25	Prediction Of Lung Cancer And Covid-19	Mukul Kumar, Mohd Umair Khan
IJESET 26	Detection Of Chronic Kidney Disease	Shahid Raja
IJESET 27	Cardiovascular Risk Prediction Using Retinal Fundus Image And Deep Learning	Suraj Prasad Kalauni
IJESET 28	On Fly Convertor	Sahil Rastogi
IJESET 29	Literature Review On Recommender System For Crop Prediction Through Collaborative Filtering Using Machine Learning	Ruchika Gupta
IJESET 30	Gas Leakage And Gas Level Indicator	Syed Quaid Hussain
IJESET 31	Comparative Analysis Of Deep Learning Approaches: Real Time Crowd Density Estimation	Nitin Kumar Saini
IJESET 32	Eco Friendly Innovations In Electronics A Comprehensive Analysis Of Green Technologies	Rachiyata Johari
IJESET 33	Cryptography In Cyber Security With Blockchain	Tushar Gupta
IJESET 34	Navigating The Promise And Perlis Of "Dalle"	Deeptangshu Sarkar
IJESET 35	Machine Learning Unveiled: An Extensive Overview Of Techniques And Applications	Farhat Ali Khan
IJESET 36	Medigraph – Eeg, Ecg, Emg & Eog Diagnostics System Using Arduino	Mohd Faraz
IJESET 37	Multiple Disease Detection In Human Using Deep Learning	Ali Samin Raza
IJESET 38	Showbook: An Online Movie Ticket Booking Solution	Mohd Nihal Khan
IJESET 39	Agronoid	Satyam Singhal
IJESET 40	Website Vulnerability Scanner	Aditya Mudgal
IJESET 41	Traffic Sense: Visionarytraffic Control	Aryan Khanna
IJESET 42	Plant Leaf Disease Detection System	Harsh Chauhan
IJESET 43	Crop Disease Identification Through Crop Leaves Using Machine Learning	Ashish Bishnoi

IJESET 44	Skin Disease Detection System Using CNN	Yuvraj Singh
IJESET 45	Integrated Iot System For Sustainable Agriculture	Nishant Pundir
IJESET 46	Face Recognition Attendance System Using Python	Tushar Olakh
IJESET 47	Women Empowermnent Through Automation And Innovation	Modika Gupta, Anushka Gupta
IJESET 48	IoT-Based Smart Soil Nutrient Detector	Aman
IJESET 49	Glass Virtual Try-On	Manu Sharma
IJESET 50	Crop Disease Identification Through Crop Leaves Using Machine Learning	Ashish Bishnoi
IJESET 51	Neat Algorithm In Game AI: An In-Depth Study On Dino Game Implementation	Aditya Bikram Chowdhuri
IJESET 52	A Review On Cloud Computing Application And Challenges In Current Scenario	Md Saheb
IJESET 53	Ensemble Technique In Neural Network For Wheat Identification And Classification: A Review	Shivani Rastogi
IJESET 54	Blockchain Innovations: Navigating Future Trends and Developments	Amit Saxena
IJESET 55	Case Studies: Real-World Blockchain Implementations	Dr. Saurabh Srivastava
IJESET 56	Evaluating Machine Learning Models for Effective Diabetes Detection	Raj Kashyap
IJESET 57	Android Malware Detection Using Machine Learning	Amay Bhatnagar
IJESET 58	Vehicle Detection With Deep Learning Based Approach: A Review	Muskan Jain
IJESET 59	A Comprehensive Study on the Design and Analysis of Comparison – Based Sorting Algorithms	AryanSharma
IJESET 60	Driver Sleep Detection And Alarming System	Deepak Jain

Assessment of AI Companies Operational Performance in India

Dr. Shanu Singh^{1, a)} and Dr. Yashmita Awasthi ^{2,b)}

1,2, Assistant Professor, School of Commerce, Finance & Accountancy, Christ (Deemed to be University), Delhi NCR, Mariam Nagar, Meerut Road, Ghaziabad – 201003, India

a)Corresponding author: shanu.singh3110@gmail.com, b)yashmitafmsbhu@gmail.com

Abstract: The article has delved into understanding the importance and performance of Artificial Intelligence companies in India with the data of the past five years. It scrutinizes the performance and significance of Artificial Intelligence (AI) companies in India over the past five years. It delves into the financial data, specifically examining Profit After Tax as an independent variable and its relation to net cash flows in these companies. The analysis involves nine prominent AI companies in India and employs statistical tools such as correlation, regression, standard deviation, and one-way ANOVA. The findings indicate varying relationships between Profit After Tax and net cash flows across different companies, underscoring the complexities within their financial dynamics. While some companies exhibit a positive correlation, others show no direct relationship. Additionally, the article explores government guidelines and existing laws that impact AI companies in India, emphasizing ethical and responsible AI usage. Despite the evolving market, the article suggests a promising future for AI companies in India, contingent upon their ability to tailor solutions to the unique challenges and opportunities in the Indian landscape.

Keywords: Artificial Intelligence Companies, Profit After Tax, Operational Performance, AI Solutions, Net Cash Flow

Drone-Assisted Air Quality Monitoring in Urban Areas

Ishan Thakral¹, Sakshi Kumari², Kalpana Kumari Singh³, Nikhil Aggarwal⁴

1,2,3,4 Department of AIT- CSE (Internet of Things) CHANDIGARH UNIVERSITY, PUNJAB, INDIA <u>a)ishanthakral5@gmail.com, b)sahsakshi6533@gmail.com, c)kaapa1011@gmail.com</u> d)nikhil.e9191@gmail.com

Abstract: In today's rapidly expanding urban landscapes, the quality of our air has become a paramount concern. The burgeoning population, coupled with industrialization and vehicular emissions, has rendered the air we breathe laden with hazardous substances such as particulate matter, nitrogen dioxide, and volatile organic compounds. This toxic concoction poses severe health risks, escalating respiratory illnesses and cardiovascular complications among urban dwellers. The Air Quality Index (AQI) plays a crucial role in gauging and communicating the health risks linked to air pollution levels, particularly evident in Indian cities where pollution often exceeds safe thresholds. It consolidates data from monitoring stations tracking pollutants like PM2.5, PM10, SO2, NO2, CO, and O3. This information aids public awareness and preventive measures against potential health impacts. Through real-time updates, AQI keeps residents informed about current air quality, influencing urban planning strategies. It helps in traffic regulations and emission controls to integrate air quality concerns into urban development plans. People deserve to be informed about the repercussions of their actions on air quality. In this context, this endeavor introduces a novel air quality monitoring system in urban areas. The system was proposed using the drone navigation equipped with a variety of IoT sensors, including MQ135, MQ2, PM sensor, and DHT11, acts as a mobile data collection platform with integrated air pollutant measuring sensors of IoT. Our proposed system uses AQI of different urban cities as a key information in all the key measurements of various toxic substances. We have compared various previously proposed approaches for the enhancement of our idea and for building a strong foundation for implementation.

Keywords: Air Quality Index (AQI), Drone, MQTT, MQ135, DHT11, Anaconda

MQTT Enabled Smart Parking Management System

Ishan Thakral¹, Nikhil Aggarwal², Vikas Malhotra³

¹Department of AIT- CSE (Internet of Things) CHANDIGARH UNIVERSITY, PUNJAB, INDIA ²Department of AIT- CSE (Internet of Things) CHANDIGARH UNIVERSITY, PUNJAB, INDIA ³Department of ECE, Chitkara University, PUNJAB, INDIA

a)ishanthakral5@gmail.com b)nikhil.e9191@gmail.com c)vikas.malhotra@chitkara.edu.in

Abstract: Internet of things (IoT) is one of the most commonly used technology to make people life easier by introducing smart applications. In this paper an IoT based smart parking management system is introduced to mainly reduce the traffic for parking slot as well as to save time for person with the use of sensors. Smart Parking System (SPS) is enhanced by accessing the data on MQTT Dashboard. The system employs IoT sensors installed in parking spaces to collect real-time occupancy data, efficiently transmitted to a central server using the MQTT protocol. A user-friendly dashboard is accessible via web and mobile interfaces, enabling real-time parking spot visibility, quick vacancy identification, and even reservation functionality. Raspberry Pi3 is used as a controller for processing the data received from IR sensors.

Keywords: Internet of things, Smart parking system, Sensor networks, Real-time monitoring, mobile application integration, MQTT.

An Exploration of Clustering Techniques for Customer Behaviour

Vikrant ^{1,a)}, Vimlesh Mishra^{2,b)}, Sanjay Sharma^{3,c)}, Arpit Jain^{4,d)}, Keshav Gupta^{5,e)}, Abhishek Jain^{6,f)}

¹Department of Computer Science and Engineering, Quantum University, Roorkee, U.K., India ²Department of Appplied Sciences & Huminities, Ajay Kumar Garg Engineering College Ghazaibad, U.P., India ³Department of Appplied Sciences & Huminities, Ajay Kumar Garg Engineering College Ghazaibad, U.P., India ⁴ Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram, AP, India

⁵GRD Institute of Management and Technology, Dehradun, UK, India ⁶Department of Computer Science and Engineering, Uttaranchal University, Dehradun, India

a) <u>vikrant.cse@quantumeducation.in</u>, b) <u>mishravimlesh@akgec.ac.in</u>, c) sharmasanjay@akgec.ac.in d) <u>dr.jainarpit@gmail.com</u>, e)gupta.keshav91@gmail.com, f) abhishekrit21@gmail.com

Abstract. Customer behavior is constantly shifting in the real world. Businesses in every sector strive to increase customer respect and achieve a high level of customer loyalty. While the client's attention is focused on a few key metrics, the sales team focuses on opportunities for cross-selling and up-selling. For instance, first call resolution, prompt resolution of client concerns, best service levels, and quality ratings. Customer clustering is used to understand customer behavior patterns so that businesses or organizations can create marketing plans that appeal to their tastes and keep consumers. In order to determine which method is best for identifying consumer profiles and trends for a retail business, greater customer happiness and retention, this article compares the effectiveness of clustering data mining algorithms.

Keywords: Clustering, Customer behaviour, , data mining, K-Means

Impact of Social Media Solutions on Natural Disaster Management: Enhancing Communication, Coordination and Resilience

Vinay Kumar Pant^{1a)}, Saurabh Srivastava^{2 b)}, Hemendra Shanker Sharma^{3 c)}, Ashish Sharma^{4 d)}, Varun Agarwal^{5 e)}

1,2,5 Department of Computer Science and Engineering, Moradabad Institute of Technology
Moradabad (UP), India

3 Department of Computer Engineering & Applications, GLA University
NH#2 Delhi Mathura Highway Mathura (UP), India

4 Department of Computer Engineering, GLA University
NH#2 Delhi Mathura Highway Mathura (UP), India

a) pantvinay02@gmail.com, b) srbh.spn@gmail.com, c) hss.agra@gmail.com, d) ashishs.sharma@gla.ac.in, e)varunitkimt@gmail.com,

Abstract. Effective disaster management methods are required to lessen the impact of natural catastrophes on infrastructure and human lives. Natural disasters present substantial difficulties to communities and governments around the world. By facilitating real-time communication, crowdsourcing data, and resource mobilisation, the advent of social media over the past ten years has opened up new opportunities for disaster management. The complex effects of social media tools on numerous elements of disaster management are examined in this study article, offering insight on how these online communities have changed disaster response and recovery.

Keywords. Natural Disaster, Resource Management, Real-Time Communication.

Statistical Techniques and a Machine Learning Model for Predicting COVID-19 Evolution

Ankul Tiwari^{1,a)}, Choudhary Ravi Singh^{2,b)}, Anu Sharma^{3,c)}, Swati Jha^{4,d)}, Praful Saxena^{5,e)}

¹Assistant Professor, Department of Electrical Engineering, Invertis University Bareilly, India ^{2,4}Assistant Professor, Department of Computer Science and Engineering, Invertis University Bareilly, India ^{3,5}Assistant Professor, Department of Computer Science and Engineering, Moradabad Institute of Technology, Moradabad, India

> <u>a)ankwari@gmail.com, b)ravirbmi@gmail.com, c)</u>er.anusharma18@gmail.com <u>d)swatijha316@gmail.com, e)</u>shyam.praful@gmail.com

Abstract. The initial identification of the COVID-19 virus occurred in December 2019 and has subsequently impacted tens of thousands of people globally. Our study underscores the critical role that machine learning can have in COVID-19 prediction, research and classification. To evaluate various COVID-19 prediction datasets, we introduced a hybrid SDT-NN algorithm, which combines elements of traditional machine learning approaches. We conducted comparisons between our proposed algorithm and conventional classifiers such as Neural Network, Support Vector Machine, Logistic Regression and Decision Tree Classifier. Our investigations revealed that our proposed algorithm achieved superior accuracy when compared to these traditional methods. The model underwent training and evaluation using publicly available datasets, demonstrating its effectiveness in surpassing previous approaches and studies. Specifically, the hybrid SDT-NN algorithm attained a Precision of 98.6% in our analysis, utilizing COVID-19 case datasets from multiple countries.

Keywords: Machine Learning, Classifier, supervised learning, COVID-19, SVM and NN

Hybrid CNN-RNN Model For Plant Leaf Disease Detection

Augutsya Pandey, a) Ayush Gupta, b) Ayush Kumar, c) and Deepti Aggarwald)

ABES Engineering College, Ghaziabad, India

a)augutsyapandey0808@gmail.com, b)ayushgupta.education@gmail.com, c)ayushkumar.education@gmail.com, d)deepti937@gmail.com,

Abstract. Plant and crops are affected by various diseases which is posing a significant threat to agriculture production and food security of a country. Detecting these diseases correctly and at early stage is necessary. Recent advancements in of classification of image on the basis of images. This research paper uses a hybrid CNN-RNN model used for recognition of plant diseases using the images of the leaves of the plants. The model is trained on a dataset containing labeled leaf images, each having various diseases. Through this research we will be able to detect the disease in three different plants that are tomato, grapes and corn with a very high accuracy.

Keywords: CNN Algo, plant diseases, image recognition

Developing Internet of Things (IoT) Based Smart Government Model for Nepal

Youba Raj Poudyal^{1,3} , Gajendra Sharma¹ , Lok Bijaya Adhikari² , Anup Basnet Chetry³ , and Sudan Jha1,a)

¹ Department of Computer Science and Engineering, Kathmandu University, Nepal
² National Earthquake Monitoring and Research Centre, Department of Mines and Geology, Kathmandu, Nepal
³Graduate School of Science and Technology, Mid-West University, Nepal
a) Corresponding author: sudan.jha@ku.edu.np/jhasudan@ieee.org

Abstract: The Internet of Things (IoT) is a network of tangible objects or entities that are connected with electronic components, software, sensors, and actuators. These components allow for communication, interaction, and the exchange of data amongst these objects. Governments can use immense volumes of data generated by users, sensors, and networks utilize in IoT systems to develop applications and gain knowledge. Consequently, IoT has the potential to facilitate the creation of important services for individuals, enterprises, and governmental organizations in several industries such areas include transportation, energy, healthcare, education, and public safety. The individual who is visiting essay acknowledges the difficulties associated with implementing and using IoT technology in the public sector, as part of the special edition focusing on the Internet of Things (IoT) for the implementation of efficient and intelligent government systems. Additionally, it proposes a comprehensive research approach that integrates Internet of Things (IoT) components to facilitate the evolution of smart governance. The report examines the difficulties encountered while adopting IoT-based efficient administration in the government sector and suggests a model that includes IoT components. The report also identifies the deficiencies in comprehending the phenomena and proposes potential areas for future investigation, such as domain-specific inquiries, the implementation and assessment of IoT systems, and the resolution of specific obstacles that impede the effective deployment of IoT systems in Nepal.

Keywords: EGDI, e-Government, Index, smart city, IoT

A Graphical Password Authentication Using Blockchain

Viraja Desai¹, Atharva Kothawade ², Shruti Mhetre ³, and Dr. Mahesh Gangarde⁴

1,2,3,4 Pune Institute of Computer Technology, Pune- 411043

a)virajadesai2002@gmail.com, b)atharva.kothawade08@gmail.com, c)shrutimhetre10@gmail.com, d)magangarde@pict.edu

Abstract: Alternative authentication techniques are of great interest due to the rise in cybersecurity concerns connected with standard alphanumeric authentication methods. In order to address the major shortcomings of traditional methods, this survey explores the nexus between Blockchain and Graphical Authentication. There are several inherent flaws in conventional authentication techniques. These vulnerabilities can be caused by users choosing simple passwords or by the difficulty of memorizing complex ones. Graphical Authentication systems use graphics as passwords to solve these issues and offer a visually appealing layer of security. The incorporation of Blockchain technology enhances security by guaranteeing decentralization and immutability. This survey uses blockchain technology to methodically investigate the field of graphical authentication. It divides current techniques into two main categories: memory-based and detection-based techniques. Every approach is examined closely in terms of its history, guiding ideas, and subtleties of application. The study offers a thorough grasp of the operational dynamics of various approaches by critically analyzing the benefits and drawbacks that are inherent in them. The survey provides insight into the creative way that Blockchain and Graphical Authentication are combined, as well as a detailed knowledge of the many approaches used in this developing industry. It highlights the necessity for ongoing development and adaptability to new security concerns and identifies possible research fields. This investigation provides insights on the market for password-based authentication systems, making it a useful tool for researchers and information security professionals.

Keywords: Blockchain, Graphical Authentication, Cyber Security

Overview of IoT Architecture, Networking Technologies and it's Applications

Mr. G. P. Gawali¹, Mr. C. R. Mankar², Dr.V.M.Patil³

Head, Department of Computer Science,
 R.A.Arts, Shri M.K.Commerce and Shri S.R.Rathi Science College, Washim, Maharashtra, India.
 ²Research Scholar, ³ Research Guide
 Department of Computer Science, Shri Shivaji college of Arts, Commerce and Science,
 Akola, Maharashtra, India.

1 gawali.gopal@rediffmail.com 2 Chandrakant.mankar23@gmail.com 3 vinmpatil21@yahoo.co.in

Abstract: The IoT is the future, every minute hundreds of new devices are being connected to the web and devices over 40 billion estimated, would be connected to IoT by 2025. IoT brings huge differences in lifestyle, medical science, environmental care, and urban development. To cope with the IoT implementation requirements various challenges have to be met such as interoperability, transmission performance, energy efficiency, security and privacy, resilience, big data management and many. The study is an attempt to explore existing networking technologies for IoT platforms. Some of the major technologies such as IEEE 802, ZigBee, Bluetooth, 6LoWPAN, W-HART, Z-wave ant other are discussed that are suitable to meet various challenges in IOT implementation. The study provides a presentation of IoT networking technologies in terms of behavior, features and applications. Research requirements and challenges like scalability, security issues, and management of energy are also discussed.

Keywords: IoT, communication interoperability, transmission performance, energy efficiency, security and privacy, scalability, resilience, sensor networks, IEEE 802.15.4, ZigBee, Bluetooth, 6LoWPAN, Wireless HART, Z-wave.

INASoc: An Improved Hybrid Algorithm for Social Network Analysis

Anu Sharma^{1,a)}, Dr. Rohit Sharma^{2,b)}, Varun Agarwal^{3,c)}, Dr. Himanshu Sharma^{3,d)} Dr. Priyank Singhal^{4,e)}

^{1,3}Assistant Professor, Department CSE, Moradabad Institute of Technology, Moradabad, U.P, India

²Associate Professor, Sanskriti University, Mathura U.P, India

⁴Associate Professor, CCSIT, Teerthanker Mahaveer University, Moradabad, India

a) <u>er.anusharma18@gmail.com</u>, <u>b)rohitsharma2412@gmail.com</u>, <u>c)</u>varunitkimt@gmail.com <u>d)cs.himanshu@gmail.com</u>, <u>e)drpriyanksinghal@gmail.com</u>

Abstract. The rising prevalence of online social networks across various domains has recently become a focal point of research in social network analysis. The work proposes and implements an improved hybrid technique, INASoc, for Social Network Analysis. The technique uses Social Network Analysis Algorithms with Neuro Fuzzy Approach. The data set is taken from Stanford Network Analysis Project (SNAP). The work analyzes the Performance of Classification (PoC) Accuracy in Test Data. The proposed algorithm compares it with back-propagation and found that the hybrid average testing error is significantly less than back-propagation algorithms.

Keywords: Social Networks, Neuro-Fuzzy Approach, data mining, Neural Network

IoT-BASED SHREWD CROP FIELD MPA SYSTEM

Himanshu Agarwal^{1, a)}, Shweta Agarwal^{2, b)}, Utkarsh Mishra^{3, c)} Vanshika Chaudhary^{3, d)}, Vanshita Singh^{3, e)}, Shaurya Chauhan^{3, f)}

¹Associate Professor, Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad (U.P.)-India

²Assistant Professor, Department of Mathematics, Ramabai Ambedkar Government Degree College, Gajraula, Amroha (U.P.)-India

³UG Scholars, Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad (U.P.)-India

a) himanshu.agg2000@gmail.com, b)Shweta.agg2000@gmail.com, c)utkarshmishra9760@gmail.com, d)outkarshmishra9760@gmail.com, d)outkarshmishra9760@gmail.com, d)outkarshmishra9760@gmail.com, d)outkarshmishra9760@gmail.com, e)outkarshmishra9760@gmail.com, <a href="mailto:d)outkarshmishra9760@gmail.com, <a href="mailto:d)outkarshmishra9760@gmail.com, <a href="mailto:d)outkarshmishra9760@gmail.com, <a href="mailto:d)outkarshmishra9760@gmailto:d)outkarshmishra9760@gmailto:d)outkarshmishra9760@gmailto:d)outkarshmishra9760@gmailto:d)outkarshmishra9760@gmailto:d)outkarshmishra9760@gmailto:d)outkarshmishra9760@gmailto:d)out

Abstract. Context: Agriculture stands as a pivotal driver of economic progress within a nation, yet the realm of technical advancements within this sector remains distressingly neglected by a multitude of governments. While farmers contribute untiring efforts to tend to their fields, substantial time is squandered on tasks like irrigation and safeguarding crops from birds and animal threats [1, 2]. This unwavering dedication often exacts a toll on farmers' health, leading to ailments and respiratory issues stemming from exposure to noxious gases emitted by certain crops. Extensive research endeavours [3-9] have been undertaken to alleviate the burdens faced by farmers. These efforts, however, frequently culminate in singular applications such as automated irrigation systems or electric perimeters for crop protection. A subset of researchers has also delved into probing the prevalence of harmful gases across agricultural fields. This paper proposes an innovative approach to address these challenges through the utilization of Internet of Things (IoT) technology.

Objective: The proposed solution canters on a NodeMCU powered intelligent crop field Monitoring-Protection-Alert (MPA) system, which serves as a technical path to revolutionize farming practices. The core objective underpinning the proposed system is the acquisition of real-time insights emanating from the crop field. This critical initiative empowers farmers with timely and accurate data, enabling them to make informed and precise decisions pertaining to their agricultural domain. Methods: By seamlessly integrating various sensors, the system detects the presence of birds, animals, and noxious gases in realtime. Furthermore, it enhances crop productivity by continuously monitoring soil parameters, including temperature and moisture levels, thereby optimizing irrigation processes. For seamless communication, the system is fortified with a GSM module that promptly alerts farmers about potential threats to their crops.

Keywords: IoT, MPA System, GSM

Advancements in Chikungunya Detection: Integrating Machine Learning with Image Classification and Early Identification

Pawan Kumar Badhan^{1, a)}, Jasmeet Kaur^{2, b)}, Alka ^{3, c)}, Sarabjeet Singh ^{4, d)}

¹Asst. Professor, IT Department, Pyramid College of Business and Technology, Punjab, ²Asst. Professor, IT Department, Innocent Hearts Group of Institutions, Punjab, ³Student, Department of Economics, University of Detroit Mercy, US, ⁴Student, Department of Computer Science and Software Engineering, University of Detroit Mercy, US

a) pank_badhan@yahoo.com, b) jasmeetkaur4003@gmail.com, c)al@udmercy.edu, d) singhsa5@udmercy.edu

Abstract- This study tackles the pressing requirement for promptly identifying Chikungunya, a significantly impactful viral disease, by merging traditional machine learning techniques with cutting-edge deep learning methods. Its central objective is to rapidly detect and categorize Chikungunya symptoms, aided by a varied clinical dataset and an image dataset specifically designed for associated skin conditions such as erythematous macular rash, petechial rash, and maculopapular rash. This diverse clinical dataset encompasses various symptoms and conditions associated with Chikungunya, including fever and joint pains, with binary markers indicating their presence or absence. This allows for an assessment of their relationship with Chikungunya infection likelihood or severity. Employing classification algorithms such as J48 decision tree and Support Vector Machine (SVM), the study achieves commendable accuracy rates of 90% and 88% respectively in early Chikungunya detection. Furthermore, Convolutional Neural Networks (CNNs) demonstrate significant progress, achieving 83% accuracy in recognizing patterns and classifying images, particularly proficient in identifying symptoms like rashes. This holistic approach underscores the potential of integrating various machine learning techniques to enhance early detection of chikungunya and intervention, ultimately contributing to improved public health outcomes.

Keywords: Machine Learning, Image Retrieval, CNN

Exploring The 6G Era Through Artificial Intelligence and Machine Learning

Varsha Sahni^{1,a)}, Komal^{2,b)}, Mamta Devi^{3,c)}, Ekta Bhaggi^{4,d)}

^{1,2,4} Computer Science and Engineering, Lovely Professional University, Phagwara ³ Computer Science and Engineering, CT Group of Institutions, Jalandhar, Punjab 144020, India

a) <u>barkhabright@gmail.com</u>, <u>b) komal.17783@lpu.co.in</u>, <u>c) manhas.sajal@gmail.com</u>, <u>d) ektabhaggi@gmail.com</u>

Abstract. The introduction of 6G networks is about to set off a major transformation in the global communications industry. The combination of artificial intelligence with 6G has the potential to significantly transform our environment, way of life, and technology. The use of advanced machine learning techniques is becoming more important as the telecom sector gets ready to make the switch to 6G networks to improve network performance and encourage application innovation. The achievement of classifying the 6G models is calculated based on certain parameters such as rating and network type/operator (Airtel, BSNL, MTNL, VI, and RJio). According to the dataset obtained from Kaggle.com named "6g coverage worldwide," different operators rely on different networks, and their performance is measured according to their requirements. In the 3G network, Airtel has a rating of less than 0, for BSNL it is 20, for MTNL the rating is slightly less than BSNL which is 10, and for VI, it is higher, equal to 200. The 4G network has only two operators, BSNL and VI. The rating of BSNL is 80, and for VI, it is 30. In the 5G network, there is a new network called RJio. The rating for Airtel is 99, for BSNL it is 20, for RJio it is 100, and for VI it is the same as that of RJio, i.e. 100. In the 6G network, three operators are there: Airtel, RJio, and VI. Airtel has a rating of 140; for RJio, the rating touches 400; and for VI, it is above 800. From this, we can conclude that 6G is going to be the most used network in the coming years. This model is calculated in the Python language using Google Collab. The R-squared (R2) of two different models is compared. The coefficient of determination, or R-squared (R2), is a statistical measure that determines how well a model predicts future outcomes or tests hypotheses. The R-squared (R2) of linear regression equals 100%, while for support vector machines (SVM), it is equal to 80%. So, linear regression is a straightforward and interpretable model. It assumes a linear relationship between the independent and dependent variables, making it easy to understand and implement. The peak data rates (in gigabits per second) of mobile broadband technologies, namely 4G, 5G, and 6G are calculated. In the upcoming years, we will witness the emergence of 6G, which has a data rate of 1000 GB/sec. This combination indicates a future where intelligent networks redefine connectivity and promote social progress and innovation.

Implementation of Adaptive Cloud Security Framework for Cloud Computing Monitoring System Applications

Rupak Sharma $^{1,a)}$, Vikas Sharma $^{2,b)}$, Tarun Kumar Vashishth $^{3,c)}$, Bhupendra Kumar $^{4,d)}$, Brijesh Kumar Sharma $^{5,e)}$, Sachin Chaudhary $^{6,f)}$

1.5 Department of Computer Applications, SRM Institute of Science and Technology, NCR Campus Sikri Kalan, Modinagar, U.P, India
2,3,4,6 School of Computer Science and Applications, IIMT University, Meerut, U.P, India
c)corresponding author: tarunvashishth@gmail.com

a),b),d),c),f) rupaks@srmist.edu.in, vicky.c610@gmail.com, singhbhupender231@gmail.com, brijeshs@srmist.edu.in,sachin.chaudhary126@gmail.com

Abstract: Various organizations implement Cloud Computing (CC) to store a significant amount of data in the clouds. Therefore, it may be necessary to secure data that may also be in video, text, udio and many other types. There are several algorithms created with the help of employing researchers' ethods for protecting the information in cloud. In this paper implementation of Adaptive cloud security framework for cloud computing monitoring system applications. Cloud security has merged as one of the most crucial challenges in cloud computing because of the industry's continued expansion. For instance, it is challenging to ensure the security of data hosted on a cloud platform since such data may be attacked. As a result, we must consider the problem of how to safeguard data stored on the cloud. Data monitoring is a vital step to secure data. We create an autonomic computing-based cloud data monitoring system on the cloud platform, checking to see whether the data is out of the ordinary throughout the cycle and reviewing the security of the data considering the results. In this paper, the feasibility of the scheme can be verified through simulation. The findings demonstrate that the suggested technique can properly assess the level of anomalous data and can adjust to the dynamic change in cloud platform load. Meanwhile, it increases the precision and timeliness of monitoring by automatically altering monitoring frequency. Additionally, it can lower the system's monitoring costs during routine operation.

Keywords - Cloud Security, Cloud Computing, Data Security, Cloud Threats, Cloud Vulnerabilities.

Empowering Education and Research: Unveiling the Dynamic Influence of Digital Libraries and Information Centres

Dr. Seema Tripathi ^{1, a)}, Chandra Bhushan^{2, b)}, Naveen Chandra Upreti^{3, c)}

¹Assistant Professor, Department of Management, IISE College, Lucknow, India ^{2,3} Assistant Professor, Department of Computer Applications, IISE College, Lucknow, India

b) <u>cbv.iise@gmail.com</u>, a) smtripathi330@gmail.com, c) naveenupreti@gmail.com

Abstract: Digital libraries and information centers have become indispensable assets in modern education and research, revolutionizing the dissemination and utilization of knowledge in the information age. This paper explores the dynamic influence of digital repositories in empowering learners, educators, and researchers across the globe. The research objectives encompass investigating user experience, evaluating the effectiveness of digital repositories, exploring strategies for digital preservation, addressing equity and inclusion issues, and examining legal and ethical considerations. Employing a mixed-methods approach, the study integrates secondary data analysis with qualitative inquiry to provide a comprehensive understanding of digital libraries' role in shaping contemporary education and research landscapes. The evolution and development of digital libraries are traced through key stages, including early digitization initiatives, the emergence of online catalogs, integration of multimedia content, and advancements in search technologies. Functions and features of digital libraries, such as access to resources, search capabilities, and preservation efforts, are outlined to underscore their significance in education and research. Digital libraries influence education by promoting accessibility, flexible learning environments, research skills development, collaborative learning, and integration with learning management systems. Similarly, they impact research by facilitating access to scholarly literature, interdisciplinary collaboration, open access initiatives, data management, and citation analysis. Challenges and opportunities in digital libraries encompass digital preservation, copyright issues, data security, the digital divide, and emerging technologies. Looking ahead, digital libraries are poised to enhance user experiences, integrate AI and machine learning, expand access to open educational resources, support collaborative research platforms, and promote digital humanities and cultural heritage initiatives. In conclusion, digital libraries represent dynamic hubs of knowledge and innovation, poised to continue shaping the future of education, research, and information dissemination. Embracing trends and addressing challenges will ensure that digital libraries remain vital resources in the evolving landscape of learning and scholarship.

Keyword- Education, Research, Digital libraries, Information centers, Empowerment

Navigating the Digital Mirage: A Survey on Detecting and Mitigating Fake Consumer Reviews

¹Gauri Tripathi, ²Akash Yadav, ³Ashutosh Shukla, ⁴Sheradha Jauhari, ⁵Deeksha Jindal

1,2,3,4,5 Information Technology, *Ajay Kumar Garg Engineering College*, Ghaziabad, India gauritripathi1201@gmail.com, ay99059@gmail.com, ashuisavid@gmail.com, sheradha20@gmail.com, deekshajindal058@gmail.com

Abstract: Consumer decision-making has changed significantly in the digital era, with online evaluations from previous customers having a significant impact on how people perceive products and how profitable enterprises are. But the proliferation of phoney evaluations has raised serious concerns, leading scholars to investigate several approaches to identify and counteract this dishonest behaviour. This survey study is intended to serve as a useful knowledge base by offering a thorough summary of the body of research on the subject of detecting fraudulent reviews. The paper meticulously examines diverse datasets, shedding light on the numerous challenges posed by fake reviews. It examines the methods and approaches used in the detection process, stressing the advantages and disadvantages of the approaches used so far. Although researchers have made great progress in reducing the negative effects of phoney reviews, this survey highlights persistent knowledge gaps about this widespread problem. Notwithstanding the advancements, the study makes a strong case for ongoing research and development in the area of false review identification. Because the digital era is dynamic, new tactics are needed to maintain the accuracy of online customer reviews. In the continuous fight against false reviews, the study highlights how crucial it is to keep ahead of the curve as consumers and companies adjust to new technology. By doing this, it promotes cooperation between academics, business leaders, and government officials in order to provide strong and practical solutions for preserving the legitimacy of online customer reviews in a constantly evolving digital environment.

Keywords: Fake review detection, Sentiment analysis, Machine learning algorithms, Network structure analysis.

Advancements In Cartoonification Techniques: A Comprehensive Review Of Gan-Based Algorithms and Comparative Analysis

Sonam Gupta $^{1,a)},$ Akshit Tyagi $^{2,b)}$, Govind Aggarwal $^{3,c)}$, Hardik Agarwal $^{4,d)}$, Ananya Agarwal $^{5,e)}$

^{1,2,3,4,5} Department of Computer Science & Engineering, Ajay Kumar Garg Engineering College, Ghaziabad.India-201006

a) <u>guptasonam6@gmail.com</u>, b) <u>tyagiakshit171@gmail.com</u>, c) <u>govindaggarwal8006@gmail.com</u>, d) <u>agarwalhardik562@gmail.com</u>, e) <u>Ananya.agarwal622@gmail.com</u>

Abstract: Cartoonification is a complex computer vision art form where real-world images are rendered into visually appealing cartoons. This is especially true in the field of artistic style transfer. Cartoonification techniques are entering a new era thanks to the introduction of Generative Adversarial Networks (GANs). Using convolutional operations and a variety of loss functions, such as adversarial, colour, content, edge, and grayscale loss, this state-of-the-art method uses two neurons. The model uses this complex framework to create artificial cartoon-like images from real-world counterparts on its own. Although there are inherent difficulties in training GANs, several methods have been developed to make the process more efficient. Some of the significant methods include pre-training the generator, consolidating the residual blocks into the generator network, utilizing the patchGAN discriminator network and adding LeakyReLU to the discriminator network. In this review paper, the literature survey offers a perceptive introduction to GANs and a distinguished compendium of several methodologies utilizing GANs such as CartoonlossGAN, AnimeGAN, CartoonGAN, and CycleGAN. It also makes it easier to compare and discuss these algorithms in a nuanced way, highlighting their advantages and disadvantages concerning cartoonification.

Keywords: Algorithms, GAN, Image Retrieval

Forecast stock using LSTM

Shivam Rawat a) and Neha Tyagi b)

Department of computer science MTECH, Amity University Noida

a) shivamrawat2626@gmail.com, b) nehanujtyagi@gmail.com

ABSTRACT: Forecasting of stock market price based on previously closing data, by which a retail investor can predict stock market price. Predicting prices of stock is the most difficult task in the computation area. Prediction involves many factors like physiological, news about market, sentiments of the people, rational and irrational behavior. All these factors contribute to make prices of stock volatile and to predict price movement with higher accuracy. The presence of a large amount of previous data and certain patterns between data help in predicting stock market prices. Ease of accessing and investing in stock market has it volatile and complex than ever before. In this we have used algorithm which uses market data which predict the share cost using machine learning

technology, like Neural network named LSTM. For this study of stock market prices, we have used

LSTM which is a neural network design for predicting closing of stock market prices. This network

is trained and analyzed over various input sizes which consist of previous days close which bring

effective graphical outcome.

Keywords: Stock Analysis, LSTM, Neural Network

Assessment Of Groundwater Quality For The Intent of Irrigation In Cuttack Using Machine Learning

Dr. Ekata Gupta ^{1,a)}, Dr. Mukta Goyal ^{2,b)}, Dr. Mukta Makhija ^{3,c)}, Ms. Madhvi Tripathi ^{4,d)}, Dr. Abhishek Srivastava ^{5,e)}

¹Associate Professor, Guru Nanak Institute of Management, Delhi, India.

²Assistant Professor, GNDIT, Delhi, India

³Assistant Professor, Department of Computer Application, Integrated Academy of Management and Technology, Uttar Pradesh, India

⁴Assistant Professor, CSA Department, Sharda University, Greater Noida, UP, India

⁵Associate Professor, Faculty of Management Studies, Gopal Narayan Singh University, Rohtas, Bihar, India

a) <u>ekata.gupta78@gmail.com</u>, b) <u>mgoyal1977@gmail.com</u>, c) drmuktamakhija20@gmail.com <u>d) mtripathi05@gmail.com</u>, e) <u>inbox.abhishek@gmail.com</u>

Abstract: The study and exploration was carried out in the Cuttack district, with 60 samples taken from the well. The pH of groundwater was considered. Electrical conductivity (EC) is one the component that was measured in several locations throughout the research vicinity. It is a major factor in determining irrigation water quality, with 16 samples, considered in light of USSL Salinity Diagram. The chemical quality of groundwater was assessed using machine learning for fourteen different strictures, i.e. including percentage of hydrogen, EC, TDS, TH, Alkalinity, Ca, Mg, Na, K, CO3, HCO3, Cl, SO4 and Fluoride (F), according to APHA guidelines According to the research, the groundwater in the study area was found suitable for agricultural purposes. Machine Learning Concepts with classification techniques have been used to predict the same.

Keywords: Machine Learning, Irrigation, Classification Technique

Advances in Deep Learning Techniques for Plant Disease Identification: A Comprehensive Survey

Mahesh Tiwari^{1, a)} and Harsh Dev^{2, b)}

¹Department of Computer Science & Engineering, Babu Banarsi Das University, Lucknow. ²Department of Computer Science & Engineering, Babu Banarsi Das University, Lucknow. a)maheshyogi26@gmail.com b)drharshdev@gmail.com

Abstract: Nowadays, Deep Learning is used in every domain like automatic car, disease detection in plants and human beings, especially in object detection, feature extraction and so on. In machine learning we give features to the machine for training but in deep learning we give only image as an input. Machine train itself with the help of different filters. Deep Learning resolves various problems like feature extraction and object detection. We discussed deep learning and its applicability in plant disease detection. The paper explores, how deep learning algorithms work to find diseases in plant and make an innovative system. We compare well-known recent research on pant disease detection systems using deep learning based on the quantity of filters, padding, activation function, and parameters. The paper focuses on plant disease detection system, architecture, research gap and their possible solutions.

Keywords. Machine learning, depth-wise convolution, LeNet-5, AlexNet, VGG-16, GoogleNet, ResNet, Sliding Window.

Enhancement in Drone Technology with Payload, Sensors and Frequency Spectrum Issues and Applications

Mohd Salman¹, Rohit Singh², Varun Agrawal³, Gaurav Trivedi⁴

1,2,3,4 Moradabad Institute Of Technology, Moradabad, UP, India

¹Salmank64@gmail.com, ² rohitmtech1988@gmail.com, ³varunitkimt@gmail.com, ⁴Gaurav.trivedi11@gmail.com

Abstract: Drones can be classified according to their size and weight, power source, autonomy level, fixed-wing or multirotor design, and other characteristics. These details are crucial for the drone's carrying capacity, maximum flight time, and cruise range, among other things. Different kinds of payloads, such as freight (like mail packages, medications, etc.) & sensors (like cameras, sniffers, mete orological sensors, etc.), can be identified part of a drone itself (i.e., the "platform") Different kinds of payloads, such as freight (like postal packages, medications, fire extinguisher equipment, flyers, etc.) and sensors (like cameras, sniffers, mete orological sensors, etc.), can be identified. There will be descriptions of various payload applications. Drones require (a certain amount of) wireless communications with a pilot on the ground in order to complete a flight. Furthermore, communication with a payload—such as a camera or sensor—is typically required. To allow this communication to take place frequency spectrum is required Frequency spectrum requirements vary depending on factors such as the type of drone, its flight characteristics, and the nature of its payload. Given that frequency spectrum allocation transcends national borders, international coordination is imperative to manage its use effectively. The legal aspects of FS (frequency spectrum) usage and EE (electronic equipment) are discussed, including internal country and global restrictions. The topic of vulnerability related to frequency spectrum consumption is also covered, along with information on associated hazards and accessible spectrum resources. Surveillance and compliance mechanisms for enforcing spectrum usage, equipment standards, and the necessity for international and European collaboration are also addressed. Finally, the discourse touches upon future advancements in drone technology, indicating a trajectory towards smaller, lighter, more efficient, and cost-effective drones. This evolution will lead to greater accessibility of drones to the general public and their proliferation across a broader spectrum of applications. Furthermore, drones are expected to exhibit increased autonomy and capabilities, including the ability to operate in coordinated swarms.

Keywords: Fixed-wing drones, propulsion, and autonomy. Drones with many rotors, frequency spectrum, wireless transmission, interference, clusters, downsizing, and sensors.

An Exploratory Analysis of Diverse Methodologies in Sentiment Analysis: A Survey

Ashish Kumar Upadhyay a), Kashish b), Bharat Tripathi c), Deepak Kumar d)

Apex Institute of Technology, CSE, Chandigarh University, Mohali, India a)ashishupa2501@gmail.com, b) kashishsharmaa2004@gmail.com c)bharat.tripathi1985@gmail.com, d)Deepak.e11296@cumail.in

Abstract: The abstract presents a study focusing on sentiment analysis techniques, crucial for understanding public sentiment and social media trends. Specifically, it investigates the effectiveness of machine learning and neural network models in analyzing sentiment from Twitter data. The dataset consists of tweets labeled with positive, negative, and neutral sentiments. Five models were evaluated, including XGBoost, Multinomial Naive Bayes, a baseline model, Gradient Boosting Classifier, and a neural network with ELU activation and Adam optimizer. Accuracy served as the primary evaluation metric after preprocessing the tweet data and partitioning it into training, validation, and testing sets. The neural network model emerged as the top performer with 79.7% accuracy, attributed to the ELU activation function and Adam optimizer. However, challenges such as data preprocessing complexities and model interpretability were encountered during the study.

Keywords: Sentiment analysis, machine learning, neural networks, Twitter data, ELU activation function, Adam optimizer, accuracy evaluation.

Sentiment Evolution On Social Media: An In- depth Study Using Naive Bayes for Twitter Sentiment Analysis

Vandana Raturi ^{1, a} ,Daksh Rawat ^{2, b} , Harshit Narang ^{3, c} , Nitin Thapliyal ^{4,d} , P. Parthiban ^{5,e} , Akash Dogra ^{6,f}

^{1,2,3,4,6}Computer Science and Engineering, Graphic Era Hill University Dehradun, India ⁵Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Trichy -620015,India

d) <u>nitinthapliyal@gehu.ac.in, a) vandanaraturi595@gmail.com, b)iamdakshrawat@gmail.com</u> c) <u>harshitn2002@gmail.com, e)parthiban@nitt.edu, f)akash.dogra1234@gmail.com</u>

Abstract. People are using social media more and more to convey their thoughts and feelings in the form of quick text messages. Recognising a person's anxiety or despair, for example, gauging a community's mood or sense of well-being. Sentiments may be displayed in a variety of ways, including facial gestures, voice, and written language are all forms of expression. Sentiment Textual analysis is mostly a content-based process. A categorization issue incorporating domainspecific notions of Machine Learning and Natural Language Processing. TSA (Twitter Sentiment Analysis) research is a current area of study in text mining. In this study, a wide range of recently suggested methods and applications are examined along with a complete analysis of the most recent advancements in the field. The goal of this study is to offer a brief, almost complete review of TSA methods and associated disciplines.

Keywords: Naive Bayes, TSA, ML, NLP

Analyzing Intelligent Transport Systems: A Case Study of the Balasore Rail Disaster

Vikas Sharma^{1,a)}, Tarun Kumar Vashishth^{2,b)}, Kewal Krishan Sharma^{3,c)}, Sachin Chaudhary^{4,d)}, Bhupendra Kumar^{5,e)}, Rajneesh Panwar^{6,f)}

1,2,3,4,5,6 School of Computer Science and Applications, IIMT University, Meerut, U.P, India

a) vicky.c610@gmail.com, tarunvashishth@gmail.com, drkks57@gmail.com, sachin.chaudhary126@gmail.com, singhbhupender231@gmail.com, rajpanwar0710@gmail.com

Abstract: Intelligent Transport Systems (ITS) represent a pivotal technological advancement in the field of transportation, aiming to enhance the safety, efficiency, and sustainability of various modes of transportation. This abstract provides an overview of the key concepts, components, and benefits associated with ITS. ITS encompasses a wide range of technologies, including advanced sensors, communication networks, data analytics, and automation. These technologies enable the collection and analysis of real-time data from transportation systems, allowing for informed decision-making and optimization of traffic flow. Additionally, ITS facilitates the integration of different modes of transport, such as road, rail, air, and sea, to create a seamless and interconnected transportation network. The main components of ITS infrastructure include intelligent vehicles, intelligent infrastructure, and intelligent control systems. Intelligent vehicles are equipped with advanced features like adaptive cruise control, collision avoidance systems, and autonomous capabilities. Intelligent infrastructure involves the deployment of sensors, cameras, and communication systems along roadways and other transportation routes to monitor traffic conditions, manage congestion, and provide timely information to travellers. Intelligent control systems integrate data from various sources and apply algorithms to optimize traffic flow, manage incidents, and support dynamic routing. The benefits of ITS are far-reaching. Improved road safety is achieved through technologies like automatic emergency braking, lane departure warning systems, and vehicle-to-vehicle communication, reducing the number of accidents and fatalities.

Keywords- Intelligent Transport Systems (ITS), Kavach, Station-Kavach, Interlocking system, Internet of Things (IoT)

Comparative Investigation on Torque Requirement Analysis for 6 DOF Robotic Manipulator with Aluminium A380 and Magnesium AZ31B Materials

Raffik R a), Abinesh P b), Sri Ram Nathan S c), Ramsubash R d)

Department of Mechatronics Engineering, Kumaraguru College of Technology, Tamil Nadu, India.

a)raffik.r.mce@kct.ac.in, b)abinesh.21mc@kct.ac.in, c) sriramnathan.21mc@kct.ac.in, d) ramsubash.21mc@kct.ac.in,

Abstract. The usage of robotic manipulators in industry has increased over the days since the introduction of Industry 4.0, but research on the material selection for robotic manipulators in industries necessitates significant importance. This article compares the joint dynamic parameters of a six-jointed robotic manipulator with 6 degrees of freedom (DOF) constructed with Aluminium A380 and magnesium AZ31B by using solid works modelling software in integration with MATLAB SimMechanics simulation tool. Torque exerted at the robotic joints of the manipulators constructed with Aluminium A380 and Magnesium AZ31B are identified separately using the Simscape multibody simulation tool. By comparing the results obtained from the Simscape simulation between the materials, we can provide insights for the construction of robotic manipulators by considering dynamic properties. The findings contribute to the selection criteria for materials in robotic arm design, aiding in the optimization of performance and energy consumption.

Keywords: Articulated robotic manipulator, Aluminium A380, Magnesium AZ31B, Simscape multibody, Torque requirement analysis.

Machine Learning Based Methods for Driver Drowsiness Detection

Yagna V. Bhatt¹ and Narayan A. Joshi²

^{1,2}Department Of M.C.A. Dharmsinh Desai University. College Road, Nadiad 387 001, Gujarat, India.

a) yagnatech.dataanalytics@gmail.com, b) narayan.joshi.mca@ddu.ac.in

Abstract. Drowsiness while driving stands out as a significant contributor to road accidents. This survey comprehensively explores methods for detecting driver sleepiness, which rely on machine learning, computer vision and deep learning. A detailed analysis is presented in this paper about methods for detecting driver drowsiness by means of facial landmark detection using various existing algorithms based on artificial neural network and computer vision. The paper concludes with insights into potential advancements in driver drowsiness detection technologies, providing significant guidance for researchers and practitioners aiming to enhance road safety through effective drowsiness detection systems.

Keywords. Driver drowsiness detection, Drowsy driving, Fatigue detection, Computer vision, Machine learning, Facial landmark detection, Eye tracking.

IoT based Air Pollution Monitoring System for Moradabad City

Amit Saxena ^{1, a)}, Kshitij Shinghal^{1, b)}, Rajul Misra ², Manish Saxena ³, Animesh Agarwal³, Vikas Kumar ⁴, Rohit Garg ⁵

Dept. of Electronics & Communication Engg., Moradabad Institute of Technology, Moradabad, U.P., India.
 Dept. of Electrical Engg., Moradabad Institute of Technology, Moradabad, U.P., India.
 Dept. of Applied Science and Humanities, Moradabad Institute of Technology, Moradabad, U.P., India.
 Dept. of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, U.P., India.
 Dept. of Mechanical Engineering, Moradabad Institute of Technology, Moradabad, U.P., India.

a) amitssaksena@gmail.com, https://orcid.org/0000-0002-5888-4246 b) kshinghal@gmail.com, http://orcid.org/0000-0002-4217-6499

Abstract. Air quality plays an important role in spiritual, mental and physical well being of a person. Though it is not common to consider that quality of air a person is breathing has deep effect on the work efficiency, emotions, levels of stress and well being of that person. It is even written in ancient ayurvedic scriptures of India that quality of air one breathes not only prolongs the life of a person but can also show magical healing effects on various diseases. Though Air Quality Index is extremely important, yet it is the most ignored and taken for granted by most of us. Related work and recent articles from new coverage also depicts that Moradabad city is amongst the most polluted cities of India. The air quality index level of Moradabad city is much above the required normal level for healthy living conditions. It is therefore proposed a unique air quality index monitoring device which can be mounted on vehicles like cars, motorbikes etc. which will be powered by battery of vehicles and monitor the air quality index level of various places of city where vehicle is commuting. The information of air quality index along with Global Positioning System tag will be send to a remote server (ThingSpeak). Then the user interested in monitoring AQI level can receive this information on a mobile application. The application will also issue alert messages when air quality index is approaching dangerous level, display safety and precautionary guidelines. The proposed device was tested and results were recorded carefully. It was observed that device was working fine and was able to monitor air quality of Moradabad City. Once adopted the proposed system can serve as novel solution to the increasing air pollution of Moradabad city and can help in creating an environment friendly mind-set in people of Moradabad city. Once such awareness is created in local community, people may refrain themselves in activities which lead to air pollution.

Keyboard: IoT, AQI, Remote Sensing

Essentials of Life Long Learning for an Engineering Graduate

Kshitij Shinghal^{1, a)} Amit Saxena ^{1, b)}, Deepti Shinghal², Nishant Saxena ^{3,c)} and Shuchita Saxena ¹

¹Department of Electronics & Communication Engineering, Moradabad Institute of Technology, Moradabad, U.P., India ²Department of Science, Summer Valley School, Moradabad, U.P., India. ²Dean Academics, Tula's Institute, Dehradun, Uttrakhand, India.

a) kshinghal@gmail.com, http://orcid.org/0000-0002-4217-6499 b)amitssaksena@gmail.com, https://orcid.org/0000-0002-5888-4246 c)nishantz.ei@gmail.com

Abstract. Today's dynamically changing work environment and introduction of rapid changing technologies has put the engineering graduates in situation that is more and more competitive and dynamic in nature. The industries are quickly adopting internal restructuring and delayering of its internal processes with an ever growing increase and changes in skill requirements. The employees are therefore under a new situation where they have to focus on life-long learning and acquiring of skills. They have to stay self-motivated and committed to enhance their skills by undergoing advanced work based and carrier based trainings. Now an engineering graduate can't imaging to stay in a same company for his entire occupational career without constantly upgrading his skill. This requires to develop a strong urge for lifelong learning in the engineering graduate. The new education policy of India and outcome based education emphasises on lifelong learning as an important graduate attribute or a program objective for any engineering program. This paper explores the question whether higher education institutes are able to invoke an urge in the engineering graduates for lifelong learning amongst their students. For this study, research focused on inculcating the urge for lifelong learning among undergraduate students of engineering of final year was carried out. On the basis of findings a unique system for lifelong learning among students is presented.

Keywords: AI, ML, Education Policy

Essentials of Ethics for an Engineering Graduate

Kshitij Shinghal^{1, a)}, Amit Saxena ^{1, b)}, Vikas Kumar ², Manish Saxena ³, Animesh Agarwal³ and Rajul Misra ⁴, Rohit Garg ⁵

¹Department of Electronics & Communication Engineering, Moradabad Institute of Technology, Moradabad, U.P., India
²Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, U.P., India.
³Department of Applied Science and Humanities, Moradabad Institute of Technology, Moradabad, U.P., India.
⁴Department of Electrical Engineering, Moradabad Institute of Technology, Moradabad, U.P., India
⁵Department of Mechanical Engineering, Moradabad Institute of Technology, Moradabad, U.P., India

a) kshinghal@gmail.com, http://orcid.org/0000-0002-4217-6499 b) Corresponding author: amitssaksena@gmail.com, https://orcid.org/0000-0002-5888-4246

Abstract: In the early development of engineering profession the concern about public safety grew, the reason was failure of several structures, collapse of bridges etc. These failures caused concern thereby forming of ethical standards. With inclusion of ethics as an essential program outcome by accreditation agencies there is increased focus on ethical practices in engineering curriculum. After graduation engineers are not only expected to give solutions to complex engineering problem (CEP) competently and skillfully but they are also expected to be aware of ethical and social implications of the solutions provided by them. They should be able to take ethical decisions in case of dilemma and should be able to reflect upon the problems. According to Accreditation Board for Engineering and Technology (ABET), understanding of professional and ethical responsibility is an essential graduate attribute. An engineer when posed to a complex engineering problem should carefully analyze the problem in light of moral and ethical sensibility, do the problem analysis with engineering and moral analysis skills. He should evaluate the solution on the basis of moral creativity and decision making skills. Solutions provided by him should be effective and not in conflict with the social, physical of ethical issues with nearby communities and based on human welfare. The presented paper follows a qualitative and quantitative approach for analyzing the status of efficacy of ethical education in engineering disciplines. It also present a model of ethical club, which is an evolving forum for exchanging the ideas among pears, mentors for resolving the ethical dilemmas poses to an engineering graduate during his professional practices.

Keywords: CEP, ABET, AI

Automated Door with Password-Based Lock

Monika Dhiman ¹, Rakesh Rajpal ², Amrit Kaur Saggu ³, Manish Rohilla ⁴

Dept. of ETCE, SAITM, Gurgaon, India
 Dept. of Mechanical Engineering, SAITM, Gurgaon, India
 Assistant professor, CHRIST (Deemed to be) University.
 Dept. of ETCE, SAITM, Gurgaon, India

monikadhiman20@gmail.com, rajpal.rakesh@gmail.com, amrit.kaur@christuniversity.in, rohillamanish237@gmail.com,

Abstract— The application of this work is to lock the door and ensure the safety of our space. This was done with heavy locks earlier. Locks do not ensure safety completely and there is a lot of tension around them. The main problem with traditional locks is that they are heavy, and their system is completely mechanical. The three basic ideas of this project are safety, privacy, and automation. This device is a password-based door lock system in which the door is opened and closed without any physical work, i.e. automatically. The key here is the password that the user has to enter to open the door. When the correct password is entered into the keypad, the microcontroller gives a command to the servo motor to rotate at a specific angle. If the incorrect password is entered, the motor will not do any operation and the user will not be allowed to enter.

Keywords: Arduino, LCD, Servomotor, Smart door, Safety, privacy

DUO TONE MULTI-FREQUENCY MOBILE CONTROLLED ROBOT

¹ Shweta Singh, ² Amrit Kaur Saggu, ³ Monika Dhiman, ⁴ Nancy, ⁵ Rakesh Rajpal

1,2,3,4,5 Dept. of Electronics and Telecommunication Engineering, SAITM, GURGAON

ims.singh8895@gmail.com, monikadhiman20@gmail.com, rajpal.rakesh@gmail.com, Amrit.kaur@christuniversity.in, n2002nancy@gmail.com,

Abstract— This research paper introduces an innovative method through the utilization of Dual Tone Multi-Frequency(DTMF) signals. The incorporation of DTMF technology provides a reliable and effective means for remote control, facilitating smooth navigation of the robot. The paper delves into the detailed design, practical implementation, and empirical outcomes of the DTMF-controlled robot, emphasizing versatility across different domains. In this paper a system can be controlled via mobile communication. DTMF is the most used and most efficient technology at present which can control robotic vehicles. The results underscore the efficiency of DTMF as a robust communication interface, showcasing its potential for real-time robot control and contributing of the progress of mobile robotics technology. The limitation of old wireless control robotic their limited working range. The main aim of this paper is to overcome that limitation without using a micro-controller.

Keywords: Remote control, System, DTMF Signal, Key Pad Dialing, Dual Tone Signaling, Communication Protocols.

Crop Prediction System Using Machine Learning

Prakhar Kapoor^{1,a)} Sejal Thakur^{2,b)} Hayat Mehmood Usmani^{3,c)} Riya Chauhan^{4,d)} Saloni Gupta^{5,e)} Neha Chauhan^{6,f)}

1.2.3.4.5.6 Moradabad Institute of Technology, Moradabad, UP, India a) Prakharvkapoor@gmail.com
b) sejal2709@gmail.com
c) hayat.usmani0911@gmail.com
d) chauhanriya5420003@gmail.com
e) saloni.gupta8978@gmail.com
f) nehachauhan232323@gmail.com

Abstract: In today's agriculture, farmers face significant challenges in maximizing crop yields and profitability. Failure to obtain clear, data-driven information specific to their geographic location often results in poor product selection and failure to allocate capital. The system can predict crop yield by integrating different factors such as weather conditions, soil quality, crop history data and technology. These predictive tools provide farmers with valuable information that helps improve resource allocation and reduce risk. Crop forecasting systems continuously improve based on real-time data, supporting sustainable agriculture, increasing productivity and contributing to food security. The system uses advanced technology to enable farmers to make informed decisions and adapt to the changing environment.

Keywords: KNN, Pandas, EDA, Numpy, MAPE, Frontend, Database, Backend

A Review on Machine Learning in Cryptography: Future Perspective and Application

Prateek Nayak ^{1, a)} and Archana Sharma ^{2, 3, b)}

^{1,2} Department of Mathematics Chandigarh University Mohali, Punjab, India

a) nprateek213@gmail.com b) archana.e10375@cumail.com

Abstract. "Abstract" This research explores the significant integrations and potentially transformative impacts of Machine Learning technology in the context of cryptography. Driven by the rapid advancement of digital systems and the increasing need for robust security mechanisms, an intersection of these highly relevant fields is proving increasingly vital. The focus of the paper is to highlight how machine learning can enhance cryptographic techniques, enabling them to predict cryptographic keys, analyse encrypted data, and develop advanced safeguards against threats as well as the application of Machine Learning within Cryptography. These include robust intrusion detection systems, automatic generation of cryptographic keys, and the prediction and mitigation of potential cryptographic vulnerabilities.

Keywods—Machine Learning, Cryptography, Cryptographic key prediction, Cryptographic applications, Security threats, Balancing advancements.

Smog Restoration of A Image Using Oblique Gradient Profile

Manish Kumar $^{1,a)}$, Sandeep Yadav $^{2,b)}$, Arpit Jain $^{3,c)}$, Anita Singh $^{4,d)}$, Keshav Gupta $^{5,e)}$, Vikrant $^{6,f)}$

^{1,2} Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College ,Ghaziabad, U.P., India,

³Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India

⁴Assistant Professor, COER University, Dehradun, UK, India
⁵Assistant Professor, GRD Institute of Management and Technology, Dehradun, UK, India
⁶Assistant professor, Department of Computer Science and Engineering, Quantum University, Roorkee, U.K.,

Corresponding author: a)kumar.manish@akgec.ac.in
b)yadavsandeep@akgec.ac.in
c)dr.jainarpit@gmail.com
d)anitasinghelina@gmail.com
e)gupta.keshav91@gmail.com
f) vikrant.cse@quantumeducation.in

Abstract: Many imaging systems utilise difficult pre-processing to remove haze from digital photos. Thus, numerous desmogging models have been developed to remove smog from photographic photos. Because desmogging models are based on physical models, a single smoggy shot must accurately evaluate the transmission map and atmospheric veil. Transmission map accuracy is essential. Many prior-based restoration models have been developed to predict the transmission map and atmospheric veil. To account for atmospheric veils. These models reduced energy function effects using a computationally intensive method. The repair models also have warped edges, textures, and colours. Thus, this paper analyses hazy pictures using a CNN. OGCP clears hazy pictures. Gathering multiple foggy or clear photos creates a dataset. We then trained CNN to predict the pollution gradient from blurry photographs. Using the calculated smog gradient, OGCP repairs foggy photos. It enhances picture clarity. According to certain performance criteria, the CNN-OGCP-based desmogging model outperforms current smog removal methods. Performance evaluations revealed this.

Keywords. CNN, Smoging, OGCP, desmogging, Softmax

IoT-Based Automated Paralysis Patients HealthCare System

A. Sakira Parveen ^{a)}, Prasanna Kumar S ^{b)}, Subash N ^{c)}, Sam Ranjith V ^{d)}, Santhanam Karuppusamy B ^{e)}

Department of Electronics and Communication Engineering, SNS College of Technology, Coimbatore, India.

a)sakiraparveen.a.ece@snsct.org, b)prasanna.s.ece.2020@snsct.org, c)subash.n.ece.2020@snsct.org, d)samranj.v.ece.2020@snsct.org, e)santhan.b.ece.2020@snsct.org
a) Corresponding author: sakiraparveen.a.ece@snsct.org

Abstract. Millions of people worldwide suffer from the devastating condition called paralysis. Many conditions, such as strokes, injuries to the spinal cord, and brain trauma may lead to it. Patients who struggle with paralysis can experience significant impairments of functionality and independence, making it challenging for them to carry out even the most essential activities for daily routine. The treatment for the people with paralysis might be completely transformed by the implementation which is associated with Internet of Things (IoT) technology. IoT-based systems are used to monitor the patient's vital signs, track their movements, and provide them with communication and assistive technology. This project proposes an IoT-based automated paralysis patient healthcare system that utilizes various sensors and microcontrollers to monitor the patient's health status and provide them with the resources that require. The system includes a pulse-oximeter for measuring the blood oxygen saturation, temperature sensor to monitor body temperature, and the motion sensor for tracking patient movements. The system also incorporates a communication module that allows the patient to send and receive messages, and an assistive technology module that can control various appliances in the patient's environment.

Keywords: Internet of Things, HealthCare System, Paralysis Patients Care, Health Monitoring System, Healthcare Automation

Contextually Aware Mental Health Chatbots: Pairwise Learning in NLP and LSTM for Enhanced Conversational Support

Bharat Tripathi, a) Divyansh Kumar, b) and Vatsal Kumar Sharmac)

Apex Institute of Technology, Chandigarh University, Punjab, India

a) bharat.e13475@cumail.in, b) divyansh.ccdps@gmail.com, c) vatsalkrsharma@gmail.com

Abstract: Mental health disorders affect millions globally, with many encountering barriers to accessing adequate support. Conversational agents, or chatbots, present a promising avenue for scalable assistance. However, ensuring their effectiveness and empathy remains challenging, especially in dynamically evolving conversations. Recent advancements in Natural Language Processing (NLP), particularly with Long Short-Term Memory (LSTM) techniques, offer promising avenues to enhance chatbot capabilities. This study proposes a novel approach to develop a generative mental health chatbot by leveraging LSTM in NLP. Our objective is to create an empathetic conversational agent capable of providing personalized support. We integrate pairwise learning techniques with LSTM to improve the chatbot's contextual understanding and conversational abilities. Through a comprehensive methodology involving dataset description, preprocessing, model specification, and training optimization, we demonstrate the efficacy of our approach. The results showcase the model's robust performance in generating coherent responses to mental health inquiries, with a training accuracy of 91.06% and validation accuracy of 72.32%. Our research contributes to advancing the capabilities of contextually aware mental health chatbots, enabling personalized conversational support and ultimately enhancing mental health interventions.

Keywords: ChatBot, LSTM, NLP

VisionVoice: An Image Captioning Web Application that Converts it to Audio for the Visually Impaired

Ashish Singh^{1, a)} and Daksh Sati^{1, b)} and Deepak Singh^{1, c)} and Hrishi^{1, d)} and Dr. Neha Tyagi2, ^{e)}

¹B.Tech(CSE), Amity University, Noida 201301, India ²Associate Professor, Amity University, Noida 201301, India

a) <u>ashish639239@gmail.com</u>, b) <u>daksh.sati.4@gmail.com</u>, c) <u>deepaksingh131102@gmail.com</u>, d) <u>hrishi.s10@gmail.com</u>, e) <u>nehanujtyagi@gmail.com</u>

Abstract: In an era dominated by visual content, the "VisionVoice" project emerges as a pioneering web application committed to narrowing the accessibility gap for visually impaired individuals. VisionVoice leverages cutting-edge machine learning technologies to deliver an immersive and inclusive experience for visually impaired users when engaging with visual information, such as picture slideshows and presentations. By employing advanced algorithms, VisionVoice transforms static images into dynamic, audio-narrated videos, enabling visually impaired individuals to access, comprehend, and interact with visual content on par with their sighted peers. This research paper explores the innovative methodologies, technical intricacies, and real-world impact of VisionVoice, emphasizing its pivotal role in advancing inclusivity and accessibility in the digital age.

Keywords: Machine Learning, Voice Recognition

A Comparative Analysis of Unsupervised Machine Learning Algorithms Using Heart Disease Data

Mohammad Nazmul Alam^{1,a)}, Vijay Laxmi^{2,b)}, Md. Shahin Kabir ^{3,c)}

^{1, 2}Faculty of Engineering and Technology, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India ³Faculty of Law, Amity University Dubai, International Education City, Dubai, UAE

a) mnazmulalam171447@gku.ac.in, b) drvijaylaxmi2003@gmail.com, c) mskabir9@gmail.com

Abstract. The utilization of unsupervised machine learning algorithms in disease prediction and healthcare analytics holds significant promise for enhancing patient care and healthcare outcomes. This study explores the application of various unsupervised algorithms, including clustering, dimensionality reduction, anomaly detection, and latent variable modeling, in disease prediction tasks. Using a health record of heart attack datasets collected from Kaggle, these algorithms aim to uncover hidden patterns, identify disease subtypes, and detect anomalies without relying on labeled examples. Evaluation of these algorithms reveals differing performances, with some methods demonstrating superior discrimination ability in distinctive anomalies from normal instances. Local Outlier Factor emerges as the top performer, followed by One-Class SVM, while Isolation Forest and k- Means clustering exhibit relatively poorer performance. Autoencoder and Principal Component Analysis yield intermediary results, suggesting their potential in disease prediction tasks. These findings underscore the comparison of unsupervised machine learning in augmenting disease prediction and healthcare analytics, paving the way for improved patient care and management.

Keywords: Unsupervised Machine Learning, Outliers, Anomalies, Performance Comparison, Algorithms

Comparative Torque Requirement Investigation for 6 DOF Industrial Robotic Manipulators: Relative Analysis using Magnesium AZ91D and AZ31B Alloys

Raffik R^{a)}, Abinesh P^{b)}, Sri Ram Nathan S^{c)}, Ramsubash Rd)

Department of Mechatronics Engineering, Kumaraguru College of Technology, Tamil Nadu, India.

a) <u>raffik.r.mce@kct.ac.in</u>, b) <u>abinesh.21mc@kct.ac.in</u>, <u>c)sriramnathan.21mc@kct.ac.in</u>, <u>d)ramsubash.21mc@kct.ac.in</u>,

Abstract. Since the introduction of Industry 4.0, the use of robotic manipulators in industry has grown; nonetheless, there is a critical need for study on the material selection of these devices. This article uses Solid Works modelling software in conjunction with MATLAB Simscape simulation tool to compare the joint dynamic parameters of a sixjointed robotic manipulator with six degrees of freedom (DOF) made using magnesium AZ91D and magnesium AZ31B. Using the Simscape multibody simulation program, the torque applied at the robotic joints of the manipulators made of magnesium AZ91D and magnesium AZ31B is determined independently. By evaluating dynamic qualities, we may offer insights for the design of robotic manipulators by contrasting the outcomes of the Simscape simulation between the materials. The results aid in the optimization of performance and energy usage by adding to the selection criteria for materials in robotic arm design.

Keywords: Articulated robotic manipulator, Magnesium AZ91D, Magnesium AZ31B, Simscape multibody, Torque Requirement analysis

Comparative Investigation for Design Optimization of 6 DOF Industrial Robotic Manipulator Drives - Torque Requirement Analysis using Magnesium AZ91D and Aluminium A380 Alloys

Raffik R^{a)}, Abinesh P^{b)}, Sri Ram Nathan S^{c)}, Ramsubash Rd)

Department of Mechatronics Engineering, Kumaraguru College of Technology, Tamil Nadu, India.

<u>a)raffik.r.mce@kct.ac.in, b)abinesh.21mc@kct.ac.in, c)sriramnathan.21mc@kct.ac.in,</u> d)ramsubash.21mc@kct.ac.in

Abstract. Since the deployment of robotic manipulators in industry has grown since the advent of Industry 4.0, investigation into the material selection of these devices is desperately needed. This article compares the joint dynamic parameters of a six-jointed robotic manipulator with six degrees of freedom (DOF) constructed from magnesium AZ91D and aluminium A380 using Solid Works modelling software and the MATLAB Simscape simulation program. Using the Simscape multibody simulation program, the torque applied at the robotic joints of the magnesium AZ91D and aluminium A380 manipulators is determined independently. By comparing the results of the Simscape simulation between the materials, we may offer insights for the design of robotic manipulators. The findings contribute to the optimization of performance and energy consumption by expanding the material selection criteria in robotic arm design.

Keywords: Torque Requirement Analysis, Articulated robotic manipulator, Magnesium AZ91D, Aluminium A380, Simscape multibody

Integration of Industrial Automation Tools with Human-Centric Approach for Enhancing Sustainable Manufacturing Processes in Industry 5.0

Akila K a), Raffik R b), Abhinnav Sundarrajan S c), Subash C d)

Department of Mechatronics Engineering, Kumaraguru College of Technology, Tamil Nadu, India.

<u>a)akila.k..mce@kct.ac.in, b)raffik.r.mce@kct.ac.in, c)abhinnavsundarrajan.19mc@kct.ac.in,</u> d)subash.21mc@kct.ac.in

Abstract. In the manufacturing industry, optimizing assembly processes is crucial for meeting production demands and enhancing efficiency. One such critical process in vehicle horn production involves riveting name plates onto the grill. However, the conventional single-station setup leads to significant machine and human idle time, hindering the assembly line's productivity. To address this issue, a novel automation station utilizing a rotary index table has been developed. The proposed innovative system revolutionizes the riveting process by incorporating multiple stations on a rotary index table, each capable of holding a component for riveting. A three-phase induction motor precisely rotates the table, positioning each component accurately for riveting. Simultaneously, a pick and place arm retrieve the finished product and deposits it into the bin, eliminating the need for manual unloading by the operator. By adopting this automated solution, machine and human idle time are effectively minimized, leading to a substantial increase in production efficiency. Furthermore, the system's versatility allows it to accommodate various components and configurations, making it adaptable for different horn models. The integration of rotary index tables into manufacturing processes, complemented by robotics, represents a promising approach to enhance productivity, efficiency, and accuracy. This innovative solution addresses the specific challenges in vehicle horn production, and it also underscores the broader potential of automation in industrial manufacturing.

Keywords: Industrial automation, Human-centric approach, Sustainable Manufacturing, Industry 5.0, Automated system integration.

Comparative Analysis of Apache Hadoop and Apache Spark for Business Intelligence

Sukhpreet Singh ^{1,a)}, Mohammad Nazmul Alam^{2,b)}, Baljinder Kaur ^{3,c)}, Kulwinder Kaur ^{4,d)}, Sukhwinder Kaur ^{5,e)}, Sohrab Hossain ^{6,f)}

^{1, 2, 3, 4, 5} Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India ⁶East Delta University, Chattogram, Bangladesh

a)sukhis005@gmail.com, b)mnazmulalam171447@gku.ac.in, c)baljinderkaur@gku.ac.in, d)kulwinderkaur@gku.ac.in, e)reetaman2013@gmail.com, f)Sohrab.h@eastdelta.edu.bd

Abstract: In an era marked by an unprecedented influx of data, advanced big data analytics has become indispensable for informed decision-making in businesses. This study delves into the significance of advanced big data analytics in the business context and conducts a comparative evaluation of two leading data processing frameworks, Apache Hadoop and Apache Spark, to assist organizations in selecting the optimal tool for their unique requirements. In today's data-driven environment, deciphering vast and diverse data sources is paramount for gaining a competitive edge. The evaluation presented herein provides valuable insights into the strengths and weaknesses of Hadoop and Spark, elucidating the factors influencing their effectiveness across various use cases. Notably, Apache Hadoop, leveraging its MapReduce model, excels in traditional batch processing, making it well-suited for tasks like ETL and data warehousing. Conversely, Apache Spark, boasting in-memory processing capabilities and diverse APIs, emerges as a versatile choice, excelling in interactive, iterative, real-time data processing, and machine learning tasks. This paper aims to assist businesses in selecting the most suitable framework for their specific data processing needs, thereby enhancing their decision-making capabilities. Furthermore, this research contributes to the expanding knowledge base on big data analytics and its pivotal role in shaping the future of business intelligence through illustrative case studies.

Keywords: Big data, Analytics, Apache Hadoop, Apache Spark

Transformative Trends: The Impact of Artificial Intelligence (AI) On Modern Education

Dr. Smrita Jain^{1, b)}, Dr. Himani Grewal^{2, a)}, Ms. Aditi Vishnoi^{3, c)}, Mr. Avinash Saxena^{4, d)}, Dr. Sachin Bhardwaj^{5, e)}, Dr. Rahul Singh^{6, f)}

^{1, 2, 3,4,5} Assistant Professor, Department of Management, Moradabad Institute of Technology, Moradabad, 244001

⁶ Associate Professor, Head of the Department, Department of Management, Moradabad Institute of Technology, Moradabad, 244001 (UP), India

a) grewalhimani88@gmail.com, b) smritagupta29@gmail.com, c) vishnoiaditi23@gmail.com, d)avinashsaxena615@gmail.com, e) sachinmba04@gmail.com, f) rsrmit@gmail.com

Abstract: The amalgamation of Artificial Intelligence (AI) with modern education is heralding transformative trends that are reshaping the landscape of learning and teaching. This paper investigates the profound impact of AI on education, examining its influence on pedagogical practices, learning methodologies, and administrative processes. From customized learning experiences to intelligent analytics systems, AI is revolutionizing the way knowledge is imparted, acquired, and managed in educational settings. By delving into emerging trends such as adaptive learning algorithms, virtual learning environments, and AI-driven assessments, this paper illuminates the innovative potential of AI to enhance educational outcomes and foster equitable access to quality education. Furthermore, it addresses the ethical contemplations and challenges that accompany the incorporation of AI in education, emphasizing the importance of responsible AI deployment and equitable access to AI-powered educational resources. Through an exploration of transformative trends, this paper seeks to provide insights into binding the full prospective of AI to generate more effective, inclusive, and future-ready educational ecosystems.

Keywords: Artificial Intelligence, Technology, Education, Learning, Growth

Efficient Image Preprocessing Pipeline for Accurate Text Extraction using OCR and Pattern Matching

Kulvinder Singh ^{a)}, Aman Sharma ^{b)}, Akshay Kumar Shahi ^{c)}, Pratyush Prateek ^{d)} Sabahul Munzarin ^{e)}

Department of Computer Science and Engineering, Chandigarh University, Mohali, India

a) <u>kulvinder.diet@gmail.com</u>, b) <u>aman.sharma0108@gmail.com</u>, c) <u>akshaykrshahi701@gmail.com</u>, d) <u>pprateek70@gmail.com</u>, e) <u>sabahulmunzarin19@gmail.com</u>

Abstract: This research paper proposes an integrated approach to enhance image preprocessing, text extraction, and metadata organization for improved retrieval and utilization of image content. It employs advanced algorithms and OpenCV for efficient image preprocessing, leading to enhanced clarity and extractability of textual and structural information. The focus lies in developing robust techniques for accurate recognition and management of image metadata, facilitating tasks such as image search and content analysis. Detailed examination of methodologies and system architecture enables seamless extraction and organization of various metadata facets, contributing to the advancement of a sophisticated framework for supporting diverse applications in fields such as image search and archival systems.

Keywords: Image preprocessing, Text extraction, Meta data organization, Optical character recognition (OCR), Pattern matching, OpenCV integration

Hate Speech Detection using Machine Learning: An Ensemble Technique

Gurojaspreet Kaur $^{1,a)}$ and Kushagra Agrawal $^{1,b)}$ and Adya Verma $^{1,c)}$ and Sumedha Magotra $^{1,d)}$ and Ashmeet Deol $^{1,e)}$

¹ Apex Institute of Technology (CSE), Chandigarh University, Gharuan, Mohali, Punjab, India, 140413

a)22bai70101@cuchd.in, b) Agrawal_kushagra@rediffmail.com, c)22bai70113@cuchd.in, d) 22bai70084@cuchd.in, e)22bai70079@cuchd.in

Abstract: Hate speech and offensive words are wrong because they can cause harm and offense to individuals or groups of people. Hate speech is particularly harmful because it can incite violence and prejudicial action against or by a particular individual or group. This paper addresses the critical need for hate speech detection in online platforms due to its impact on social cohesion and individual well-being. It presents an ensemble model for hate speech detection model using three pre-trained machine learning techniques, including (SVM, Naive Bayes, Decision Trees). A novel hate speech detection model tailored to online discourse nuances is introduced, combining feature engineering with machine learning mechanisms. Experiments on benchmark hate speech datasets evaluate model performance using metrics like accuracy 89.534%. Results highlight superior performance of our model over other machine learning architectures. The research contributes insights for developing robust hate speech detection systems to foster safer online environments and promote inclusive discourse.

Keywords: Hate Speech, Machine Learning, Random Forest (RF), Decision Trees (DT), Logistic Regression (LR) Exploratory Data Analysis (EDA), Support Vector Machine (SVM)

Decoding Emotions: LSTM-Based Sentiment Analysis for Movie Reviews and YouTube Comments

Prashant Sharma, ^{1, a)} Sanjeev Gupta, ^{2, b)} Pankaj Gangwar, ^{3, c)} Prince Kumar, ^{4, d)} Naman Saxena, ^{5, e)}

1,2,3,4,5 Moradabad Institute of Technology, Moradabad, Uttar Pradesh, India

a) <u>er.prashant.in@gmail.com</u>, b) <u>sandygupta2@gmail.com</u>, c) <u>756pankaj@gmail.com</u>, d) <u>princechauhan1088@gmail.com</u>, e) <u>naman.in.saxena2003@gmail.com</u>

Abstract: Sentiment analysis helps computers understand how people feel about something by examining the words and expressions they use in their writing or speech. This concept helps to gain insights into public opinion and sentiment on different topics, especially in real world applications such as customer feedback analysis, social media monitoring and product reviews. Nowadays, there are numerous social media platforms exist, and YouTube is one among them. YouTube has become a primary platform for releasing movie trailers, songs and movies too. The audience, viewers express their sentiments in the comment section. To assess the sentiments with the help of the user's comments, this paper performs sentiment analysis. It investigates Long Short-Term Memory (LSTM) model performance on two different datasets, IMDB Movies dataset and YouTube video comments dataset given on GitHub, with the objective of examine the effectiveness of a single model on two different but related datasets. The model is giving testing accuracy of 88% and 89% on respective datasets which is competitive with other approaches.

Keywords: Sentiment Analysis, Deep Learning (DL), Convolution Neural Network (CNN), Long short-term memory (LSTM), Classification

Unveiling the Mysteries of Vedic Mathematics: A Comprehensive Study

Sachin Kumar Agrawal ^{1, a)}, Manuj Kumar Agarwal ^{2, b)}, Khilendra Singh ^{3, b)}, Pratosh Kumar Awasthi ^{4, b)}, Harendra Kumar ^{5, b)}, Navneet Rohela ^{6, b)}

1, 2, 3, 4, 5, 6 Assistant Professor, Department of Applied Sciences & Humanities, Moradabad Institute of Technology, Moradabad, Uttar Pradesh, India

sachin269mit@gmail.com, b) manuj6july@gmail.com, ksdhariwal82@gmail.com, pratoshawasthi@gmail.com, kumarharendra574@gmail.com, navneetrohelambd@gmail.com

Abstract: Vedic Mathematics, an ancient Indian system of mathematics, offers a unique and efficient approach to solving mathematical problems. This paper explores the principles of Vedic Mathematics and its relevance and importance in modern daily life. It discusses how Vedic Mathematics can enhance mental math skills, improve problem-solving abilities, and streamline calculations in various aspects of daily life, including education, finance, and professional endeavors. Through a review of literature and practical examples, this paper demonstrates the practicality and effectiveness of Vedic Mathematics in simplifying complex computations and fostering an in-depth understanding of topics pertaining to mathematics.

Keywords: Vedic Mathematics, Comparative Analysis

Bio-Inspired Animal Mating Features: A Study in Evolutionary Adaptations

Neha Tyagi, 1, a) Deepshikha Bhargava, 2, b) and Anil Ahlawat 3, c)

^{1,2} Amity School of Engineering & Technology, Greater Noida, Uttar Pradesh, India. ³ Computer science & Engineering KIET Group of institution, Ghaziabad, India.

a) nhtyagi190@gmail.com, b) deepshikhabhargava@gmail.com, c) anil.ahlawat@kiet.edu

Abstract: A bio-inspired algorithm is a computational method or optimization technique that draws inspiration from principles and mechanisms observed in biological systems or natural processes. These algorithms represent the efficiency and adaptability and different common features i.e. Intelligence, Mating, Learning, Adaptation, Territorial Behavior, Adaptive Communication etc. Found in living organisms to solve complex problems in various domains. These algorithms are used to solve difficult issues across a range in different regions by imitating the effectiveness and flexibility of living things. These algorithms provide a novel approach to problems in fields including optimization, machine learning, robotics, and data analysis by making use of the self-organization, adaptation, and parallelism seen in biological systems. Genetic algorithms, neural networks, ant colony optimization, particle swarm optimization, and other algorithms that take their cues from the ways in which live thing's function are examples of bio-inspired algorithms. The paper is based on the study of different animals or birds who is having common mating feature i.e. peacock algorithm, Emperor penguin, Barnacle, Honey Bee, Bird algorithm. In this paper the study of mating features of animal's based on bio inspired algorithms.

Keywords: Mating features, bio inspired algorithm, Emperor Penguin algorithm, butterfly algorithm, peacock algorithm

Fuzzy Logic-Based Analysis of Student Behavior Patterns in Educational Environments

Pravesh Kumar Bansal^{1,a)}, Mushtaq Ahmed ^{2,b)}

¹ Assistant Professor in UEM Jaipur & PhD Scholar in Department of Computer Science & Engineering, Malviya National Institute of Technology Jaipur India

² Associate Professor in the Department of Computer Science & Engineering, Malviya National Institute of Technology Jaipur India

a) 2019rcp9557@mnit.ac.in, b)mahmed.cse@mnit.ac.in

Abstract: Students from various backgrounds face multiple challenges in pursuing higher education, so students need proper attention to perform better. The student's performance depends on several factors: background, knowledge level, language, culture, career, social life, family Pressure, sports activity, Behavior, eating Behavior, Social Behavior, and other demographic parameters. The constraints in these various areas are students' poor and good performance. This work emphasizes the target reason for under performance or better performance of the students. We use a questionnaire survey form that constrains questionaries, and evaluation precisely determines the cause and generates AI-based solutions to counsel the students so that their performance can be improved. Fuzzy logic is applied in this work to analyze student behavior patterns in educational contexts. The inclusion of uncertainty and ambiguity into a flexible and understandable framework for describing the intricacies inherent in human behavior is provided by fuzzy logic.

Keywords: Fuzzy Inference System, FLC (Fuzzy logic controller), Behavior Analysis

Deep Learning-based Multi-Modal Surveillance System for Camera Coverage, Accident Detection, and Fight Detection using CNN Algorithm

¹Ajeet Singh ² Kunal Sharma ³Md Vadiyat Naqvi ⁴Khushi Tyagi ⁵Kumkum Joshi

1,2,3,4,5 Dept of Computer Science and Engineering, Moradabad Institute of Technology, Moradabad UP, India

¹ajeetsingh252@gmail.com; ²kunalsharma8630@gmail.com; ³mdvadiyatnaqvi@gmail.com; ⁴khushityagi771@gmail.com; ⁵kumkumjoshi066@gmail.com

Abstract: In response to the escalating crime rates amidst the ubiquitous presence of CCTV cameras worldwide, governments are turning to advanced technologies to bolster their surveillance capabilities. One promising avenue is the utilization of deep learning algorithms to develop an intelligent crime detection system. The objective of this initiative is to autonomously identify criminal activities using real-time photos and videos captured by surveillance cameras, thereby eliminating the need for constant human monitoring and expediting the intervention process. Enter the Crime Detection system, which leverages deep learning techniques to analyze visual data and flag potential criminal behavior. Upon detecting suspicious activities, such as individuals brandishing weapons like guns or knives, the system promptly alerts human supervisors or local law enforcement authorities. This proactive approach enables swift response to unfolding incidents, enhancing public safety.

Keywords: Deep Learning, CNN Algorithms, Crime Detection System

Leaf Disease Detection Using Deep Learning

Manoj Kumar Singh^{1,a)}, Manish Gupta^{2, b)}, Mohammad Amaan^{3, c)}, Noman Naeem^{4, d)}, Mohd Sahil Saifi^{5, e)}, Mohammad Askari^{6,f)}

¹Associate Professor, CS&E Department, Moradabad Institute of Technology, Moradabad, India ²Professor, CS&E Department, Moradabad Institute of Technology, Moradabad, India ^{3,4,5,6}BTech 4th Year, CS&E Department, Moradabad Institute of Technology, Moradabad, India

a) manojaswal1982@gmail.com

Abstract. The agriculture industry has witnessed a tremendous increase in the incorporation of sophisticated technology, particularly deep learning, to address challenges such as crop diseases affecting yield and quality. Automated disease detection through deep learning offers promising solutions to enhance crop management practices. This research focuses on evaluating the efficiency and accuracy of developed deep learning models beforehand, such as VGG19, DenseNet201, DenseNet121, ResNet50, and AlexNet, in detecting 15 different classes of diseases in pepper bell, tomato, and potato crops. By conducting comparative analyses of these models using the PlantVillage dataset, we aim to identify their strengths and weaknesses for practical deployment in agricultural settings. The approach makes use of convolutional neural networks (CNNs) for feature extraction and categorization. Model performance is evaluated using a variety of measures, including precision, recall, F1 score, and classification accuracy. Experiments are carried out on a computer equipped with a GPU, using Python and frameworks like Keras and TensorFlow.

The PlantVillage dataset consists of 15 disease classes, enabling comprehensive training and evaluation of the models. Through rigorous experimentation and analysis, this research contributes valuable insights to the development of robust tools for agricultural disease management, thereby enhancing resilience and productivity in agricultural systems.

Keywords: Leaf disease detection, pre-trained networks, convolution neural networks, deep learning.

b) manishymca2007@gmail.com

c) mohdamaan570@gmail.com

^{d)} nomannaeem985@gmail.com

e) mohdsahil1703@gmail.com

nohdaskariamu8559@gmail.com

Obesity Classification and Prognosis Using Machine Learning

Aditya Kumar Tripathi^{1,b)}, Nupa Ram Chauhan^{2,a)} and Amit Sharma^{3,c)}

^{1,3}Computer Science and Engineering, Teerthanker Mahaveer University, Moradabad, U.P., India ²Teerthanker Mahaveer University, Moradabad, U.P., India

> b aditya250790@gmail.com a nrcua80@gmail.com c amitsharma.computers@tmu.ac.in

Abstract - Community advocacy is now vital to health-related solutions problems that can be solved by medical research using new technologies. Obesity is becoming a global health concern as it becomes a threat to the lifesaving future. It is a common global health issues and integrated with many diseases, risks and death. Early, the prognosis of this disease will help both doctors and patients to act and minimize the life threats, if not completely eradicate root cause or work to prevent further worsening of disease symptoms. Experiencing, the patient's medical history is the most time-consuming process of identifying the disease manually and this involves error-prone analysis and costs. Therefore, there is a need scientifically develop a prognostic model of the occurrence of the disease or its existence with the help of an automated machinery as it is becoming the need of the day. This paper has implemented the automated computational methods on a publicly available clinical data set to predict obesity status using different machine learning algorithms as Gboost, Random Forest, Decision Tree, K-nearest neighbour, and Support Vector Machine. By using these algorithms it classify the obesity level of patient and the complexity of the diseases that varies for the models amongst proposed approaches are 94% to 99%, with a precision value of 95 % to 98 %, sensitivity from 96 % to 99 %. The performance of the model and computational result is very promising as the Gboost classifier achieves the highest accuracy of 99 percent for classification and diagnosis which is always support for both doctors and patient.

Keywords: Obesity; Machine learning; Gboost; Random Forest; Decision Tree; Support Vector Machine

Average of Objectives Method to Solve MOTP

Khilendra Singh ^{1, b)}, Sachin Kumar Agrawal ^{2, a)}, Pratosh Kumar Awasthi ^{3, b)}

1,2,3 Assistant Professor,

Department of Applied Sciences & Humanities,

Moradabad Institute of Technology, Moradabad, Uttar Pradesh, India

^{a)} Corresponding author: sachin269mit@gmail.com ^{b)} ksdhariwal82@gmail.com, pratoshawasthi@gmail.com

Abstract. For a businessperson, transportation is a fairly regular issue. Every businessperson wants to cut transportation costs, time, distance, etc. There are various approaches for solving transportation problems with a single goal, however, transportation problems are not usually solved with a single goal. A typical assignment is to solve a transportation problem with many objectives. In this study, we investigated an innovative strategy for solving multi-criteria TP called the Average of Objectives Method for Solving Multi-Objective TP. We tackled the problem of transportation (TP) with four goals. We calculated the average of the objectives and applied our technique. A procedure was also employed to find out the pareto optimum solution. The present method produces superior objective measures over alternate techniques. To illustrate the idea, two numerical examples are given, as well as a comparison to several current methods.

Keywords: Multi-objective, Optimization, Transportation, Average, Pareto optimality.

Comparative Study of Supervised Machine Learning Techniques: A Review

Amit Kumar ¹, Shelendra Pal ², Ajeet Singh ³, Atul Pratap Singh ⁴

¹ Research Scholar, CCSIT, Teerthanker Mahaveer University, Moradabad (U.P.), India. ² Associate Professor, Teerthanker Mahaveer University, Moradabad (U.P.), India.

³ Assistant Professor, Department of CSE, MIT Moradabad (U.P), Indi

⁴ Assistant Professor, Department of AI, NIET, Greater Noida, (U.P), India

amitakg84@gmail.com, shelendra.pal12@gmail.com, ajeetsingh252@gmail.com, atulpratap26385@gmail.com

Abstract: Mining means to predicate the useful information from the usage amount of a data set. Machine learning provides kinds of algorithms (SVM KNN, Random Forest, Naïve Forest) that effectively mine the data. In this paper, we will learn about Supervised learning and its categories of algorithms. And, we will compare the algorithm and find out how an algorithm can give the best performance reviewed by published research papers.

Keywords: SVM, Naive Bayes, Machine learning, Classification, Random Forest.

A Smart Protective Headgear for a Rider

Sourav Verma¹, Rohit Yadav², Nikhil Aggarwal³

^{1,2} Department of Computer Science and Engineering, CHANDIGARH UNIVERSITY, PUNJAB,

³ Department of AIT- CSE (Internet of Things) CHANDIGARH UNIVERSITY, PUNJAB, INDIA

a halffilled18@gmail.com, b)developer.royad@gmail.com, c)nikhil.e9191@gmail.com

Abstract: Smart protected gears have revolutionized the world of riding by incorporating cutting-edge technology to increase rider safety. The implementation of these helmets not only enhances the safety of the rider but also send alert notification to family members. In this paper we have proposed a smart helmet are equipped with sensors that not only detect whether the rider has worn the helmet properly, but also detect alcohol when rider inhale or exhale and communicate with the bike to prevent it from starting if necessary. Additionally, a piezoelectric sensor that detects falls and sends an alert to the rider's loved ones or emergency services. Furthermore, proposed smart protected gears utilize RF communication to send encoded signals to the circuit and take appropriate action according to the data received. With these features, smart protected gears act as a protective headgear for riders and drastically reduce the likelihood of head injuries in case of an accident. We have also proposed a website dashboard for riders, which contains rider's basic details to rider's important vehicle documents and sensors data like in how many accident rider's got, how much rider travelled and how much cashback he got based on kilometres he travelled.

Keywords: GSM Module, Force Sensing Sensor, Alcohol Detection, RF Communication, Piezoelectric Sensor

Exploring Consumer Behavior and Evolving Marketing Trends in Robo-Advisor Research: An In-depth Bibliometric Study for Future

Strategic Insights

Rubel¹ and Dr. Pinisetti Swami Sairam²

¹Research Associate, ²Assistant Professor
Woxsen University, Kamkole, Sadasivpet, Sangareddy District, Hyderabad, India.

1 rubelamincu@gmail.com, 2 sairam.pinisetti@woxsen.edu.in

Abstract: This chapter presents a thorough examination titled "Exploring Consumer Behavior and Evolving Marketing Trends in Robo-Advisor Research: An In-depth Bibliometric Study for Future Strategic Insights". Employing bibliometric methods, the study scrutinizes the scholarly landscape surrounding Robo-advisors' integration in Consumer Behavior and Evolving Marketing. Through meticulous quantitative assessment, critical trends, influential authors, and emerging research themes within Robo-advisory systems are identified. The analysis encompasses a comprehensive review of academic publications, citation patterns, and collaborative networks, offering insights into knowledge evolution and idea interconnectedness. By mapping the field's intellectual structure, the study enhances our understanding of impactful contributions, guiding future research directions. It emphasizes identifying seminal works, evolving research frontiers, and potential literature gaps. Additionally, the abstract underscores the practical implications of bibliometric analysis for academics, researchers, and industry practitioners, aiding in navigating the vast landscape of Roboadvisors in Consumer Behavior. Through its systematic approach and comprehensive insights, the chapter advances scholarly discourse and informs research trajectories in this evolving domain, fostering knowledge expansion and innovation in Robo-advisor research.

Keywords: Robo-advisors, Consumer engagement, Bibliometrics, Technology, Marketing Trends

Sentimental Analysis using Natural Language Processing

Anil Kumar¹, Dr. Abhay Bhatia², Dr. Rajeev Kumar³, Dr. Sunil Kumar

^{1,4}Department of Information Technology, AKG Engineering College, Ghaziabad

²Department of Computer Science & Engineering, RIT, Roorkee Uttarakhand, India

³Department of Computer Science & Engineering, MIT, Moradabad, UP, India

Abstract: Sentiment analysis, a subfield of Natural Language Processing (NLP) plays a crucial role in extracting subjective information and sentiments from textual data. With the exponential growth of user-generated content on social media, online reviews, and other platforms, the need to automatically analyze and understand sentiment has become increasingly important. This research paper presents a comprehensive study on sentiment analysis using NLP techniques. The primary objective of this study is to explore the effectiveness of different methods for sentiment analysis and to identify the strengths and limitations of each approach.

Furthermore, emerging trends and future research directions in sentiment analysis with NLP are identified, pointing towards areas of improvement and opportunities for further investigation.

Keywords: Natural Language Processing, Social Media Analysis, Sentiment analysis, Customer feedback analysis, online reviews.

PulseVisioGuard: Touchless Blood Pressure and Heart Rate

Estimation

Amber Mishra, Anurag Gupta, Arpit Singh, Deepti Aggarwal

Department of CSE (AIML), ABES Engineering College, Ghaziabad, Uttar Pradesh, India 201009

Email: amber.20b1531103@abes.ac.in, anurag.20b1531034@abes.ac.in, arpit.20b0131009@abes.ac.in

ABSTARCT: An individual's vital signs may be gleaned from their heart rate (HR), a key

physiological metric. By using a consumer-grade camera to record movies of faces, our novel

method avoids the need for bulky sensors. The acquired data is checked against ground truth BP and

HR readings taken from the OMRON HBP1300 BP monitor, which has been authorised for clinical

use. The metrics used for evaluation, such as the standard deviation of errors, mean absolute error,

and normalised mean square error, follow the exacting guidelines laid forth by the Association for

the Advancement of Medical Instrumentation. In addition, the two-tailed dependent sample t-test

confirms that our method's predicted BP and HR are not significantly different from the OMRON

values. As we move away from hypertension and towards a more generalised picture of health, heart

rate (HR) becomes one of the most important physiological indicators. In our hands-free system, a

camera serves as the principal instrument for a real-time application. The basic idea is to use the

ever-changing process of blood circulation to detect changes in face skin colour and use that

information to calculate heart rate. One area where this noninvasive device really shines is in

tracking the vital signs of drivers. This technique allows for continuous and real-time evaluation by

using variations in face skin colour as a surrogate for heart rate fluctuations. Its potential uses in

improving driver safety include the early identification of irregular heart rate patterns that may be

signs of stress, exhaustion, or other medical issues.

Keyword: Plusrate, Heart-rate, OMRON

Anonymizing Data to Avoid Privacy Breach

Neha Gupta¹ and Dr. Manish Gupta²

¹Assistant Professor, ²Professor Computer Science and Engineering Department, Moradabad Institute of Technology, Moradabad

> ^{a)} discoverneha@gmail.com ^{b)} manishymca2007@gmail.com

Abstract: Health care providers are working day and night to ensure good health of all. However, in this endeavor a major privacy breaches also have occurred due to availability of data in public mode or due to open access of data or due to some or the other reasons. Healthcare departments are publishing personal details of susceptible persons over web. In this work, one such dataset has been taken and anonymization techniques have been applied to it for reducing the privacy breach.

Keywords: Health Care, Data Privacy, Data Analytics

Detection and Recognition of Handheld Armaments Based on Video Surveillance using Deep Learning Technique

Neha Gupta¹, Bharat Bhushan Agarwal²

¹Computer Science and Engineering Department, IFTM University, India.

Computer Science and Engineering Department, Moradabad Institute of Technology, Moradabad

²Computer Science and Engineering Department, School of Computer Science and Applications,

IFTM University, India.

a) discoverneha@gmail.com, b) bharat agarwal@iftmuniversity.ac.in

Abstract: This research tackles a crucial component of security in the modern world by introducing

a revolutionary weapon detection method based on YOLOv8. The surveillance footage that can

either be recorded for live viewing while the activity is happening or replayed after it has been

captured and tested on the YOLOv8 model. Every aspect of life is impacted by the current trend

toward "automation," and video analytic is no exception. To guarantee system reliability and lower

the possibility of needless alarms, a strong emphasis on high accuracy with few false positives is

focused. It is significant that the focus on helping to create intelligent security solutions is in line

with the continuous endeavour to utilize cutting-edge technologies for the benefit of society.

Encouraging safer communities is a common objective, and this research helps to meet the pressing

demand for reliable threat detection systems in the dynamic security environment of today.

Emphasizing the system's adaptability to different security needs is a way to highlight its versatility

in deployment in a variety of environments, including stadiums, schools, airports, and urban centers.

Preventing possible security breaches and guaranteeing people's safety in public areas require

proactive security measures.

Keywords: Deep Learning, YOLO, Automation

A Novel Machine Learning Hybrid Model for Heart Disease Risk Assessment

Saurabh Srivastava¹, Tasneem Ahmed², Amit Saxena³

¹Department of Computer Science & Engineering (Data Science), Moradabad Institute of Technology, Moradabad

²Advanced Computing and Research Laboratory, Department of Computer Application, Integral University, Lucknow

³Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, India

srbh.spn@gmail.com, tasneemrke@gmail.com, er.amitsaxena79@gmail.com

Abstract: In over a hundred nations, millions of people lose their lives to heart disease (HD) every year. According to a report by the World Health Organization (WHO), HD has emerged as one of the leading causes of death worldwide. Angina pectoris, congestive heart failure, cardiomyopathy, congenital heart disease, arrhythmias, myocarditis, heart attacks, and heart cancer are just a few of the illnesses that can cause heart attacks. HD presents a significant global health challenge, prompting extensive research into early detection and preventive measures. This study introduces a predictive model leveraging advanced machine learning (ML) techniques to assess HD risk. The model development process encompasses several phases, including data preprocessing, feature selection, and model training employing state-of-the-art algorithms like logistic regression, decision trees, random forests, artificial neural networks, naïve Bayes, KNN, and support vector machines. Additionally, feature importance analysis and model evaluation techniques are utilized to refine interpretability and performance. The results exhibit the model's efficacy in accurately predicting HD risk, offering valuable insights for early detection and personalized healthcare strategies. Overall, this research emphasizes the potential of data-driven methodologies in constructing predictive models for HD, presenting a promising avenue for enhancing patient outcomes and alleviating the burden on global healthcare systems.

Keywords: Heart Disease Prediction, Machine Learning, SVM, ANN, Logistic Regression

A Transfer Learning Based Model for Brain Tumor Detection Using

Magnetic Resonance Imaging

Saurabh Srivastava ¹, Tasneem Ahmed ², Amit Saxena ³

¹ Department of Computer Science & Engineering (Data Science), Moradabad Institute of Technology, Moradabad,

² Advanced Computing Research Laboratory, Department of Computer Application, Integral University, Lucknow, India

³ Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, India

srbh.spn@gmail.com, tasneemrke@gmail.com, er.amitsaxena79@gmail.com

Abstract: Rapid and uncontrolled proliferation of cells is the cause of brain tumors. If treatment is not carried out early, death can occur. A major challenge in detecting a brain tumor is that it originates from variations in size, shape, and location. Since tumor cells are diverse, it might be difficult for radiologists to classify brain tumors, which are malignant diseases. The overall survival of patients, treatment planning, and risk factor identification depend on robust and accurate tumor classification and prediction. In the medical field, deep learning (DL) and machine learning (ML) are often employed to diagnose illnesses. Various tools have been developed that are used to diagnose different diseases such as heart disease, lung cancer, and many more. In this study, a DLbased transfer learning technique has been used to build a model that can easily identify whether a patient is suffering from a brain tumor or not. Brain tumors have been categorized into four types of categories based on the characteristics of the tumor. Patients who are suffering from the first and second categories of tumors can be saved by treatments that include surgery, radiation therapy, and chemotherapy. The third and fourth categories of tumors are more dangerous because these categories of tumors spread very fast, so if it is diagnosed early stage then the patient can be saved or increase the patients life span. Glioma, Meningioma, and Pituitary are a dangerous form of tumors, and the survival rate of patients who are suffering from these is very low. The developed system can predict that a patient is suffering from a brain tumor or not using MRI, and also predict the type of tumor such as Glioma, Meningioma, and Pituitary.

Keywords: MRI, InceptionV3, ResNet101V2, VGG16, VGG19.

An Analytical Study On Safety Measures Concerns In Cloud Computing Technology

Mrs. Anjali Sharma¹, Mr. Alok Sharma² Mr. Sandeep Rana³, Mr. Amit Singh⁴, Mrs. Khushbu Datwani⁵, Ms. Divya Tiwari⁶, Mrs. Rohini Matta⁷

^{1,6} School of Computer Science and Applications, IIMT University, ^{2,7} J.P. Institute of Engineering and Technology, Meerut ^{3,4} CCSIT, Teerthanker Mahaveer University, Moradabad, India ⁵ Career Point University, Kota, India

anjali.shail@gmail.com, sandeepmietcs@gmail.com, alok2910472@gmail.com, amit84376@gmail.com, kdatwani2011@gmail.com, Divya socsa@iimtindia.net, Fmmrohini123@gmail.com

Abstract: Using a network of remote servers that are accessible via the internet to store, manage, and process data on demand even as charging based on usage is recognized as cloud computing knowledge. Instead of local servers or PCs, it offers access to a pool of shared resources. As it doesn't truly obtain the products, it keeps association's time and funds on oversight. Distributed computing is a entirely web-based innovation in which customer data is stored and managed on the server farms of cloud providers such as Google, Amazon, Microsoft, and many others. The area of cloud technology is expanding and receiving praise internationally. A number of security flaws are emerging when using cloud-based administration services. This research paper offers a summary of distributed computing idea and security concerns that occur in the context of cloud computing technology and distributed computing. This paper also offers most excellent apply to experts' helpful and hard work wishing to employ cloud administration to improved their main concern presently environment and enhance it's utilize. It as well as systematically studies the key research and concerns that here in cloud computing. Our assessment mainly spotlight is on accepting the concept of multi-occupancy security issues and existing literature.

Keywords: Cloud Computing, Cloud Models, Cloud security and Distributed Computing

Netflix Stock Market Price Prediction

^{1st} Uttkarsh Sharma, ^{2nd} Aman Kumar, ^{3rd} Raju Kumar

1,2,3 Department of Computer Science and Engineering Galgotias University Greater Noida, India uttkarsh.21scse1010389@galgotiasuniv ersity.edu.in, aman.20scse1010117@galgoiasuniversi ty.edu.in, raju@galgotiasuniversity.edu.in

Abstract: The Netflix Stock Price Prediction System aims to leverage advanced ML and data analytics techniques to predict the future stock prices of Netflix, Inc. (NASDAQ: NFLX). Netflix's stock performance is influenced by a myriad of factors, including subscriber growth, content strategy, competitive landscape, and overall market conditions. This predictive system employs a multifaceted approach, integrating historical stock data, financial indicators, and macroeconomic variables to enhance the accuracy of predictions. The system comprises several key components: Data Collection and Preprocessing, Feature Engineering, Machine Learning Models, Validation & Optimization and Real-time Monitoring & Adaptation. The Netflix Stock Price Prediction System represents a sophisticated integration of machine learning, data analytics, and financial expertise. Its predictive capabilities aim to assist investors, financial analysts, and other stakeholders in making informed decisions in the dynamic and competitive landscape of the stock market. While acknowledging the inherent uncertainties in financial markets, the system provides a valuable tool for risk management and strategic planning related to Netflix stock investments.

Keywords: Netflix stock price prediction, Netflix, ML, stock price, data analytics, stock investments

Cyberbullying Detection Using Machine Learning

Ajay Kumar Yadav, Hari Om Patel, Mr. Raju Kumar

Galgotias University, Greater Noida, India

ajay.20scse1010628@galgotiasuniversity.edu.in, hariompatel3369@gmail.com, raju@galgotiasuniversity.edu.in

Abstract: The use of social media has grown exponentially through the years with the growth of the internet and has end up the most influential networking platform within the twenty first century. however, the enhancement of social connectivity often creates bad impacts on society that make contributions to more than one bad phenomena such as online abuse, harassment cyberbullying, cybercrime and on-line trolling. Cyberbullying often leads to critical mental and physical distress, specially for women and children, and even every now and then force them to try suicide. on line harassment attracts interest due to its sturdy negative social impact. Many incidents have currently took place worldwide because of on line harassment, which includes sharing personal chats, rumours, and sexual comments. consequently, the identity of bullying textual content or message on social media has received a growing quantity of interest among researchers.[1] The cause of this studies is to design and expand an effective method to discover on-line abusive and bullying messages by way of merging herbal language processing and device studying, two distinct freatures, namely Bag-of words (BoW) and time period frequency-inverse text frequency (TFIDF), are used to examine the accuracy degree of 4 awesome machine getting to know algorithms.

Keywords: Support vector, Deep learning, Machine learning algorithms, Social networking, Merging, Media Feature extraction, Cyberbullying Detection, Text Classification.

Empowering Edge Computing: The Critical Role of Blockchain in Cybersecurity Defense

Amit Saxena¹, Saurabh Srivastava², and Rajeev Kumar¹

¹Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, India ²Department of Computer Science & Engineering (Data Science), Moradabad Institute of Technology, Moradabad, India ¹er.amitsaxena79@gmail.com, ²srbh.spn@gmail.com, ¹rajeev2009mca@gmail.com

Abstract: In modern computing, edge computing has become a key concept that allows data processing and analysis to occur closer to the point of generation. Edge computing systems are scattered and decentralized, which presents substantial problems for cyber security defense and calls for creative ways to protect sensitive data and maintain operational integrity. Blockchain's promise to improve cyber security in edge computing ecosystems has attracted a lot of attention. This study examines how blockchain technology can be used to strengthen cyber security defenses in edge computing environments. Edge devices may safely authenticate and connect with one another, build trust, and confirm the integrity of transactions and data exchanges by utilizing blockchain's immutable ledger and consensus processes. Additionally, blockchain makes it easier to build audit trails, access control, and decentralized identity management, which reduces the risk of data breaches and unauthorized access. Smart agreements also make it possible to automate security regulations and enforcement procedures, which improves the effectiveness and resilience of edge cyber security protection. This study emphasizes the complementary link between blockchain and edge computing in strengthening cyber security defenses, addressing issues, and realizing the full potential of decentralized computing environments through a thorough analysis of the available literature and case studies.

Keywords: Blockchain, Edge Computing, Cyber Security

The Evolution of Industry 5.0: Harnessing Artificial Intelligence and Communication Technology

Mahender Singh Sagar¹, Saurabh Srivastava², and Rajeev Kumar³

¹Department of Computer Science & Engineering (AI & ML), Moradabad Institute of Technology, Moradabad, India

²Department of Computer Science & Engineering (Data Science), Moradabad Institute of Technology, Moradabad, India

³Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, India

¹mahendra.singh12jan@gmail.com, ²srbh.spn@gmail.com, ³rajeev2009mca@gmail.com

Abstract: Industry 5.0, which integrates cutting-edge technologies like artificial intelligence (AI) and communication technology (CT), represents a big paradigm shift in manufacturing and industrial processes. This study explores the deep implications of AI and CT on the development of Industry 5.0, with a focus on how these technologies are revolutionizing industrial productivity, efficiency, and teamwork. AI is revolutionizing Industry 5.0 decision-making processes with its capacity to analyze massive volumes of data and extract actionable insights. In order to streamline operations and cut downtime, machine learning algorithms improve quality control procedures, forecast maintenance requirements, and optimize production workflows. AI-driven robotics and automation technologies also supplement human labor, freeing up workers to concentrate on creative and strategic work.

Simultaneously, CT is essential for enabling smooth communication and teamwork in dispersed production settings. Real-time monitoring and control of production processes are made possible by the combination of cloud computing, modern networking infrastructures, and Internet of Things (IoT) devices. Industry 5.0's synergistic interaction of CT and AI breaks down conventional barriers to allow for the development of agile supply chains and smart manufacturing. In this study, examines previous studies to clarify the complex effects of AI and CT in Industry 5.0.

Keywords: AI, Communication Technology, Decicion Making

Fire Detection under Suspicious Activity Recognition in Video Surveillance using Deep Learning Algorithm

Neha Gupta^{1,2,a)} and Bharat Bhushan Agarwal^{3,b)}

¹Computer Science and Engineering Department, IFTM University, India. ²Computer Science and Engineering Department, Moradabad Institute of Technology, Moradabad AKTU University, India.

³Computer Science and Engineering Department, School of Computer Science and Applications, IFTM University, India.

> a) discoverneha@gmail.com b) bharat agarwal@iftmuniversity.ac.in

Abstract: This study presents a deep learning model-based real-time fire detection system using YOLOv8 technology. The system uses a combination of deep learning, machine learning, and computer vision to detect fires in real-time video surveillance. The research focuses on the complex techniques used in deployment, validation, and data preparation. The system mimics the human fire detection process, handling video data generated by regular cameras. The results show the system is effective in spotting flames or fire, reducing false alarms and security threats. The system also improves assessments, reduces security threats, and continuously learns from previous incidents to adapt to new situations. This approach, which incorporates YOLOv8 which is a significant advancement in fire protection measures, improving public safety and safeguarding lives and property. When a fire is detected in the frame, an alarm is sent along with a confidence score and a time instance.

Keywords: Fire recognition, Fire object detection, YOLOv8, Roboflow, Ultralytics, Deep learning, cls loss, box loss, dfl loss, mAP

SMART PARKING AND GREEN CHARGING

Abhinav Gupta¹, Annu Singh², Aditya Tyagi³, Anant Agarwal⁴, Anmol Chaudhary⁵, Divi Agarwal⁶

¹Assistant Professor, Computer Science and Engineering Department MIT, Moradabad, India ^{2,3,4,5,6}Students, Computer Science and Engineering Department MIT, Moradabad, India

¹abhinavguptamit@gmail.com, ²annu41160@gmail.com, ³shikaripbx1@gmail.com, ⁴anantagarwal987@gmail.com

⁵chanmol0051@gmail.com

⁶diviagarwal2410@gmail.com

ABSTRACT: The rapid urbanization of cities worldwide has led to significant challenges, particularly in traffic congestion and environmental pollution. Traditional transportation systems, heavily reliant on fossil fuels, exacerbate these issues, leading to deteriorating air quality and increased greenhouse gas emissions. The urgency to find sustainable solutions for urban mobility is paramount. This research paper presents an innovative approach to addressing these challenges through a smart parking and green charging system. The proposed system integrates renewable energy sources and advanced Internet of Things (IoT) technologies to optimize urban mobility, enhance efficiency, and reduce environmental impact. The smart parking system utilizes a combination of IR sensors, RFID technology, and IoT devices like Arduino and NodeMCU to streamline parking management. IR sensors detect vehicle presence in parking slots, while RFID tags and readers facilitate secure access control, ensuring only authorized vehicles can park. An LED display provides real-time information to users about parking slot availability, enhancing user experience and reducing the time spent searching for parking. Central to this system is the green charging infrastructure for electric vehicles (EVs). Solar panels generate renewable energy, which is stored in a 12-volt battery system. This stored energy powers the entire smart parking system and is used for wireless EV charging through resonant coils. The integration of MOSFETs and IC4047 timers allows for the generation of precise pulse-width modulation (PWM) signals, which drive the transmitter coils. These coils create an alternating magnetic field that induces a current in the receiver coils embedded in the EVs, enabling efficient wireless charging through electromagnetic induction. The control circuitry, managed by microcontrollers such as Arduino, regulates the operation of MOSFETs and monitors the charging process. Feedback from sensors ensures optimal charging efficiency and safe operation, making the system both user-friendly and reliable. Additionally, the NodeMCU ESP8266 module facilitates remote monitoring and control, allowing users to manage parking and charging through a mobile application seamlessly. This research highlights the potential of integrating renewable energy with advanced IoT technologies to create a holistic solution for urban transportation challenges. The smart parking and green charging system not only addresses the immediate issues of traffic congestion and pollution but also promotes the adoption of sustainable transportation methods. By improving air quality, reducing greenhouse gas emissions, and enhancing the overall user experience, this system represents a significant step towards creating smarter, greener cities. This paper underscores the need for continued innovation in this field and suggests avenues for further research and development to refine and expand these technologies.

KEYWORDS: IoT, Electric Vehicles (EV), Smart Parking, Renewable Energy Source, Wireless Charging, Magnetic Induction

A lightweight Machine Learning Based Intrusion Detection System for Edge Computing

Vipin Kumar^{1, a)}, Vivek Kumar^{1, b)} and Amit Kumar^{1,2 c)}

¹Department of Computer Science, Gurukula kangri (Deemed to be University), Haridwar, India

^{1,2} Quantum University, Roorkee, India ^{a)} Corresponding author: 19523003@gkv.ac.in ^{b)} vivekdcg@gkv.ac.in ^{c)} 19523002@gkv.ac.in

ABSTRACT: Edge computing refers to a decentralised computing environment where data is processed in close proximity to the end user, resulting in decreased latency and reduced bandwidth use. Privacy and security concerns persist in spite of the wide range of uses for edge computing. Edge computing poses a heightened vulnerability to network security breaches due to the transmission of data over several networks and its processing on various devices. There are several safe solutions available for this, including a firewall, robust authentication techniques, and an intrusion detection system (IDS). IDS are employed to identify zero-day attacks or detect previously undisclosed cyber-attacks in edge networks. This paper presents an IDS that utilises ML techniques and is trained on the UNSW-NB 15 dataset. The IDS model being suggested utilises a Filter-Based feature selection method and classification algorithm to accurately detect and classify harmful network events. The feature selection process is conducted using the relevance score approach, as well as the Decision Tree, Extra Tree, Random Forest, and Extended Gradient Boosting classification algorithms. The results indicate that the classification model, based on a smaller feature set, achieves improved accuracy by having a higher Detection rate and a lower False Positive Rate. The efficacy of the suggested IDS paradigm for edge computing is demonstrated, since it ensures a secure network environment for users.

KEYWORDS: Edge Computing, Network Security, Feature Selection, ML

SmartSpray: Autonomous Pesticide Spraying Drone for Precision Farming

Zubair Iqbal¹, Abhay Pratap Singh², Palak Rani³, Deepak Chauhan⁴, Abhay Bhatnagar⁵

1,2,3,4,5CS&E Deptt MIT Moradabad

¹Zubairiqbal117@gmail. Com, ²Thepratapabhay21@gmail. Com, ³Plknainna128125@gmail. Com, ⁴Thakurdeep3440@gmail. Com, ⁵Abhay123bha@gmail. Com

Abstract: Apart from military and commercial applications of drones. Unmanned aerial vehicles, or drones, are being used more and more often across a wide range of industries. To gain the greatest benefits in the future, developed nations like the USA have been spending more and more in their drone technology. Since the use of UAVs will usher in the next great revolution, emerging nations like India have begun to explore this sector's potential. This paper focuses on applications of drone in the field of agriculture. We know and it has been evident that India is an Agriculture dependent country because almost 50% of its national income comes from agriculture and it is the biggest source of employment to the people of India directly or indirectly. Agriculture has been the main focus of the Government of India also since the Independence as during the early 50s when the fiveyear plan was being implemented the main focus in the first five years plan was put on agriculture only and India produced record number of crops that led to the growth of the country and showed us the importance of agriculture in the development of the nation. But, with the agriculture to be the backbone of the country's economy, there comes many challenges that we have to face to keep our crops protected from many environmental problems which are now being tackled with the use of various technology. The problem of insects and pests is also one of the many problems that can be solved with the spreading of insecticides and pesticides with the help of drone that can perform the task with the least amount of man force and time. Drones can aid the spreading of these insecticides in a more convenient and efficient manner.

E-CLINIC: IOT BASED VIRTUAL OPD PLATFORM FOR REMOTE CONSULTATION

Shailesh khaparkar¹ and Agya Mishra²

¹Department of Electronics and Telecommunication, Jabalpur Engineering college, Jabalpur M.P (India) ²Department of Electronics and Telecommunication, Jabalpur Engineering college, Jabalpur M.P (India)

Author Emails

a) Corresponding author: shaileshkhaparkar@gmail.com

b) agyamishra@gmail.com

ABSTRACT: This research introduces an innovative concept for a smart telemedicine system allowing patients to consult with the doctors from a remote place. The initiative offers an Internet of Things (IoT)-based real time online OPD and consultation system. Online OPD system provide the facility of screening of patient by monitoring vital signs such as heart rate, oxygen saturation, ECG, skin temperature, eyes, tongue as well as audio and video system for online consultation. Doctors can recommend/prescribed medicine, pathological test and consultation through cloud based data sheet .Vital sign details are recorded in e- datasheet for future purposes. Developed Online OPD system are tested and verified in presence of senior doctor on 15 patients. The results are as expected as per clinical needs.

Keywords: Online OPD, e-Datasheet, telemedicine, Online prescription.

GESTURE CONTROLLED COMPUTER SYSTEM

Rohit Kr Singh¹, Himanshu Maurya², Divyanshu Gupta³, Gaurvi

Bhardwaj⁴ and Divyanshu Yadav⁵

1,2,3,4,5 Department of Computer Science and Engineering, Moradabad Institute of Technology

¹rohitmtech1988@gmail.com, ²mauryahimanshu987@gmail.com, ³divyanshuguptarmp790@gmail.com, ⁴gaurvibhardwaj14@gmail.com, ⁵yadavdevo1510@gmail.com

Abstract: Gesture Controlled Computer System is a utility software to cater to the daily needs of various working professionals including teachers, educators etc. by providing a comprehensive solution of the basic problems. The software comes with various utilities like touch less keyboard, mouse and whiteboard, all just controlled with the help of our hand gestures. Minimization of hardware has been one major focus of this software thus minimizing overhead cost associated with the general computer system. The GCCS software is easy to install, making it extremely user friendly and sound for meeting daily needs.

WEAPON DETECTION SYSTEM USING DEEP LEARNING ALGORITHM

¹ Neha Gupta, ²Shaurya Sarswat, ³Vanshita Chauhan, ⁴Riya Pandey

^{1,2,3,4}Department of Computer Science Engineering, Moradabad Institute Of Technology, Moradabad, India

discoverngp@gmail.com, shauryasarswat01@gmail.com, vanshitachauhan709@gmail.com, riyapandey1014@gmail.com

ABSTRACT: The escalating threats posed by firearms necessitate advanced weapon detection systems for enhanced security. Our research introduces a novel weapon detection system based on YOLOv8, capable of real-time threat identification. By leveraging deep learning, our system provides high accuracy with minimal false positives, augmenting surveillance measures in diverse environments. It can be deployed in airports, schools, stadiums, and urban centers, offering proactive security measures to protect lives and prevent potential security breaches. This research contributes to the development of intelligent security solutions, fostering safer communities and addressing the urgent need for robust threat detection systems.

KEYWORDS: FPN, CNN, YOLO, mAP

SIGN LANGUAGE DETECTION USING MACHINE LEARNING IN PYTHON

¹ Prakhar Kapoor , ² Neha Gupta

¹ Computer Science & Engineering Department, Moradabad Institute of Technology, AKTU University, India
² Computer Science & Engineering Department, Moradabad Institute of Technology, India

¹ prakharvkapoor@gmail.com ² discoverneha@gmail.com

ABSTRACT: This study explores Sign Language Detection through Machine Learning in Python. Leveraging computer vision and deep learning techniques, the model interprets sign gestures, offering a bridge for communication with the hearing-impaired. The research enhances accessibility and inclusivity by providing an efficient and accurate means of sign language interpretation.

KEYWORDS: KeyPoints, LSTM^[1], MediaPipe, Tensorflow, OpenCV

A Voice Assisted Traffic Sign Board Recognisation System: A Survey

Richa Saxena^{1,a}, Prateek Singh^{2,b}, Ishita Gupta^{3,c}, Ajhar Ali^{4,d}, Dikshant Kumar^{5,e}, Vaibhav Yadav^{6,f}

¹Department of Computer Science and Engineering, Moradabad Institute of Technology, Moradabad, India

^{2,3,4,5,6} Department of Computer Science and Engineering, Moradabad Institute of Technology, Moradabad, India

^{a)}Richa Saxena: richasaxena2006@gmail.com ^{b)}Prateek Singh: prateeksingh0809@gmail.com ^{c)}Ishita Gupta: ishitagupta781@gmail.com ^{d)}Ajhar Ali: ajharalimbd@gmail.com ^{e)}Dikshant Kumar: dikshantk266@gmail.com ^{f)}VaibhavYadav: yadavvaibhav109@gmail.com

Abstract: The purpose of this research study is to investigate the use of convolutional neural networks (CNN) in the creation of a voice-activated traffic sign board recognition system. The system's voice instructions and ability to recognize traffic signs are intended to help drivers. Images taken by an onboard camera are used to properly categorize traffic signs using the CNN model. A voice assistant is also integrated into the system to provide the driver feedback in real time. A number of studies are used to assess the system's performance, and the findings show that the suggested strategy has the potential to improve road safety. Keywords- TSR (Traffic Sign Recognition), Driver Assistance Systems (DAS), Automated Driving, Convolutional Neural Networks (CNN), Pre-Processing Techniques, Image Classification

DINE SCAN: AUTOMATED ORDER PLACING SOFTWARE FOR RESTAURANTS USING QR CODE, ORDER MANAGEMENT, AND BILLING MANAGEMENT

Richa Saxena¹, Aman Ruhela², Mohd. Suhail³, Dharmendra Pratap Singh⁴, Himanshu Singh⁵, Aditya Agarwal⁶

¹Department of Computer Science Engineering, Moradabad Institute of Technology, Moradabad, India ^{2,3,4,5,6} Moradabad Institute of Technology, Moradabad, India

¹richasaxena2006@gmail.com, ²amanruhela36@gmail.com, ³mohdsuhail2232@gmail.com, ⁴dharmendrakps17@gmail.com, ⁵himanshuwch@gmail.com, ⁴adityaagarwaludi@gmail.com

ABSTRACT: Our research introduces an automated order placing software for restaurants, utilizing QR code technology for seamless ordering. Patrons scan QR codes at tables to access a user-friendly menu on their smartphones, facilitating easy ordering and secure online payments. The system integrates order placement, billing, and real-time insights for restaurant owners through a web application. According to a survey conducted by the National Restaurant Association, 79% of restaurant operators agree that technology can help increase sales. Establishments with technologydriven solutions reported an average increase in order accuracy by 23% and a reduction in order processing time by 17%. Tech-enabled restaurants experienced an average of 25% growth in revenue. These statistical insights underscore the transformative impact of technological innovation in the restaurant industry. Powered by modern technologies like HTML5, CSS, JavaScript, PHP, SQL Server, and Azure cloud it ensures efficient communication and data management. Python programming language and flask framework are used for data analytics purpose, python libraries like NumPy, matplotlib, seaborn, pandas are used. This solution optimizes the dining experience for customers while providing restaurateurs with comprehensive business management tools, Outstanding results are expected to be achieved like reduction in customer wait times by 25%, revenue increase by 30% and operational costs reduces by 20% through automation. Concluding it to be a scalable, efficient and streamlines the restaurant operations in a very technologically justified manner.

KEYWORDS: Automated Ordering, QR Code Integration, Restaurant Management, SMS APIs, Real-time Analytics, Order Analytics.

SYSTEM FOR MARKING ATTENDANCE THROUGH FACIAL RECOGNITION UTILIZING OPENCV

Hayat Mehmood Usmani¹, Amay Bhatnagar², Neha Gupta³

1,2,3 Department of Computer Science Engineering, M.I.T Moradabad, Moradabad, India

¹Hayat.usmani0911@gmail.com ²Amaybhatnagar13@gmail.com ³discoverneha@gmail.com

ABSTRACT: This paper presents a Facial Recognition Attendance System using OpenCV, offering precise results and thorough performance evaluation. Traditional attendance systems are prone to inaccuracies and inefficiencies, necessitating automated solutions. Leveraging facial recognition technology, our system integrates detection, extraction, recognition, and logging functionalities. Through meticulous implementation and evaluation, we validate its effectiveness across various conditions, including diverse lighting and facial expressions. Quantitative metrics such as accuracy, precision, and efficiency exceed 95%, ensuring reliable attendance recording. The system's user-friendly interface enables seamless integration into existing frameworks, catering to educational and organizational needs. Our study highlights scalability, adaptability, and practical utility, surpassing traditional methods. Future research directions include optimizing real-time performance and addressing privacy and security concerns in facial recognition technology deployment.

KEYWORDS: OpenCV, HAAR, Cascade, LBPH

AN EXPLORATION OF DEEP LEARNING FOR MEDICAL IMAGE ANALYSIS

Rohit Kumar Singh¹, Vinay Kumar Pant², Mohd.Salman³ and Yukti Varshney⁴

Moradabad Institute of Technology1,2,3,4, Moradabad, India

CORRESPONDING AUTHOR: 1ROHITMTECH1988@GMAIL.COM

ABSTRACT: The Methodology of capturing pictures of inner organs for medical reasons, like

diagnosing or identifying diseases is called medical imaging. The primary goal of Imaging data

analysis in medicine is to enhance the effectiveness of medical research and medicament decisions.

Deep learning and Machine learning has revolutionized Clinical image analysis, by delivering

exceptional output in works like feature extraction, categorization and differentiation. The

development of deep convolutional neural networks and the availability of advanced technological

resources are key factors driving this progress. Deep learning methods excel at identifying hidden

patterns in images, aiding medical professionals in making accurate diagnoses. These methods have

proven to be the most effective for computer-assisted diagnosis, disease classification, organ

segmentation, and cancer detection. Numerous deep learning techniques have been described for

analyzing medical pictures for diverse diagnostic reasons. In this study, we examine research

utilizing the latest advancements in DL techniques for healthcare image processing. We start survey

by reviewing convolutional neural network-based medical imaging research projects. Second, we go

over widely used pre trained models and generic adversarial networks that help boost the efficiency

of convolutional networks. Finally, we collect performance data from Deep learning techniques that

objective is detecting COVID-19 and analysis the maturity of children's bones to enable direct

evaluation.

KEYWORDS: CNN, GAN, ALEXANET, GOOGLENET

SAFEDRIVE GUARDIAN: A Multi-Model Safety System.

¹Pavan Kumar Singhal, ²Akash Sharma, ³Akshay Kumar, ⁴Nikita

¹Asst Professor, Computer Science & Engineering Department, ^{2,3,4} 4th Year, Computer Science & Engineering, Moradabad Institute of Technology

¹singhal.pavan@gmail.com,² sharmaakash5157@gmail.com, ³akshaykumar120500@gmail.com,⁴ nikitagoutam11@gmail.com

Abstract: SafeDrive Guardian is a cutting-edge multi-model safety system designed to enhance driver safety through the integration of advanced detection technologies. This research paper explores the various components of SafeDrive Guardian, including drowsiness detection, yawning detection, age detection, and driver distraction detection. By combining these mechanisms, SafeDrive[1,2] Guardian offers comprehensive protection for drivers and passengers on the road. The paper discusses the significance of each detection feature in preventing accidents and minimizing risks associated with driver fatigue, distraction, and age-related impairments. Furthermore, it examines the challenges and limitations faced by SafeDrive Guardian, as well as its real-world applications across different industries. Future developments in SafeDrive Guardian technology are also discussed, highlighting ongoing efforts to improve accuracy, reliability, and compatibility. Overall, SafeDrive Guardian represents a significant advancement in driver safety technology, promising to reduce accident rates and save lives on the road.

KEYWORDS: Drowsiness Detection, Yawning Detection, Age Detection and Driver Distraction Detection.

The Boat: A Smart Garbage Collection & Waste Technique Using IOT

Richa Saxena¹, Mohd. Arsh ², Manasvi Agarwal³, Jhalak Bhardwaj⁴, Jyoti Saini⁵, Monika Giri⁶

1,2,3,4,5,6Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, India

¹richasaxena2006@gmail.com, ² <u>arshmohammad834@gmail.com</u>, ³manasvi2908@gmail.com, ⁴ jhalakbhardwaj2000@gmail.com, ⁵ Sainijyoti73206@gmail.com, ⁶ monikagiri05736@gmail.com

ABSTRACT: The problem of drinking water insecurity in coastal areas stems from complex hydrogeological structures. Natural disasters and transboundary river problems make the supply of safe water more difficult than in other regions. The potential threat of industrial pollution increases the difficulty and hinders efforts to establish widespread and adequate access to safe and affordable drinking water in these coastal areas. Knowing that access to clean water close to home is a human right to maintain a healthy life demonstrates the urgent need to address water-related diseases and prevent pollution. To adequately address these issues, water parameters such as pH, turbidity, temperature, dissolved oxygen, and salinity must be carefully monitored. Our answer to these needs is an IoT-based water quality measurement system designed for efficiency and sustainability. The core of the solution is an intelligent sensor interface device with the ability to detect water quality parameters and transmit real-time data directly to an online system. Integrating multiple sensors with Arduino provides a comprehensive approach to monitoring water quality indicators. A serial communication link was established between the Arduino and the water TDS to ensure data transfer and display information on an online platform or web interface. To increase user access, each water source has a QR code, allowing individuals to quickly assess the safety of their water with a simple scan. This innovative system not only provides people with information about drinking water quality, but also provides governments with a valuable tool to monitor water quality in specific areas. In addition to home use, this adaptive system can also be used in agricultural and industrial environments. The design, development and implementation of these IoT-based solutions will enable authorities to take proactive measures and implement effective solutions in areas facing water quality issues.

KEYWORDS: Real Time System, IoT, Arduino Nano, pH Sensor, WI-FI Module, Salinity, Dallas Temperature Sensor, Esp Sensor, Water Quality, Humidity Sensor.

ECOMENTOR USING MACHINE LEARNING

Abhinav Gupta¹, Anushka Gupta², Areeba³, Devyani Goyal⁴, Lakshya Gupta⁵

1,2,3,4,5 Department of Computer Science & Engineering, MIT, Moradabad, India

abhinavguptamit@gmail.com, anushkagupta0306@gmal.com, areeba7535@gmail.com, devyanigoyal312@gmail.com, lakshvaguptta@gmail.com

ABSTRACT: EcoMentor represents a groundbreaking initiative at the intersection of environmental science and machine learning, poised to address the pressing challenges posed by environmental degradation. This project encompasses four essential modules: air pollution monitoring, water pollution assessment, weather monitoring, and rainfall prediction. By seamlessly integrating live and historical data, coupled with purpose-built machine learning models leveraging Python libraries, EcoMentor establishes an adaptive system capable of dynamically responding to environmental fluctuations. Going beyond traditional monitoring approaches, EcoMentor signifies a fundamental shift towards sustainable environmental management. By demonstrating the efficacy of technology-driven solutions, it advocates for informed decision-making to foster a healthier and more resilient planet. EcoMentor stands not merely as a project but as a testament to the transformative potential of interdisciplinary collaboration and technological innovation in environmental stewardship.

KEYWORDS: Environmental Science, Machine Learning, Sustainability, Air Pollution, Water Quality, Weather Forecasting, Rainfall Prediction

CONTENT MODERATION ON SOCIAL MEDIA PLATFORM

Ravish Dubey¹, Harsh Vardhan Singh², Abhijeet³, Bhavya Singh⁴,
Abhishek Kumar⁵

1,2,3,4,5 Computer Science and Engineering Department, MIT, Moradabad, AKTU University, India

¹ravishkrdubey@gmail.com

²harshvrdn03@gmail.com

³ abhijeetsingh5631@gmail.com

⁴singhbhavya291@gmail.com

⁵abhishek1723@gmail.com

ABSTRACT: This research paper introduces a comprehensive methodology for detecting plant leaf diseases employing deep learning techniques in image analysis. The proposed system amalgamates a robust deep learning model for precise disease identification, a well-structured frontend facilitating user interaction, and a scalable back end for efficient data processing. Leveraging the growing availability of image datasets, particularly the Plant Village dataset, a deep convolutional neural network is trained, achieving notable accuracy in recognizing various crop species and their associated diseases. The system not only displays technical viability but also tackles practical challenges in automating plant disease diagnosis. Through experimental evaluation, the system's effectiveness is demonstrated, laying a solid foundation for its potential application in the agricultural domain. These findings significantly contribute to ongoing endeavors aimed at augmenting food production quality and curbing economic losses through early and accurate plant disease detection. The insights derived from this research are distilled from various sources, shedding light on the utilization of deep learning methodology in plant disease classification and the advancement of mobile-based systems for automated diagnosis. This abstract encapsulates the key elements of the research paper, including deep learning utilization, the fusion of front-end and back- end components, and the practical ramifications of the proposed plant leaf disease detection.

KEYWORDS: Content Moderation, Social Media, Online safety, NLP, Deep learning, image and video classification

AI CONTENT MODERATION ANALYSIS

Kanchan Rani¹, Shiwani Agarwal²,Harshit Saxena³, Ayush Vishnoi⁴, Aditya Singh⁵,Ayush Sharma⁶

1,2,3,4,5,6 Computer Science and Engineering Department, MIT, Moradabad, India

kanchansinghcs@gmail.com,
shiwani.agarwal310@gmail.com,
harshit.saxena262001@gmail.com,
ayush5165372@gmail.com,
adityabussinesslimited@gmail.com,
aayushsharma00121@gmail.com

ABSTRACT: The rising user-generated content on online platforms has necessitated robust content moderation systems to maintain community standards and foster a safe environment online. In this paper, we propose an AI-powered content moderation system designed to effectively identify and filter out inappropriate or harmful content across a variety of digital platforms. Leveraging machine learning algorithms and natural language processing techniques, our system aims to automate the content moderation process, reducing burden on human moderators while improving efficiency and accuracy excessively! Through a combination of keyword detection, image recognition, and nonsensical sentences, our model strives to adapt to evolving online content trends and effectively moderate diverse forms of user-generated content. We present the architecture, implementation, and evaluation of our AI content moderation system, highlighting the potential impact on enhancing online safety and fostering healthier digital communities.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Convolution Neural Networks, ImageRecognition, Audio Recognition, Video Recognition, Pattern/Text Recognition

Meta Metrics: Web Analytics Prodigy

Prachi Agarwal¹, Kanchan Rani², Mohak Singh Rajput³, Yash Bhatnagar⁴, Akshit Tyagi⁵, Vaishali Yadav⁶, Vanshika Chaudhary⁷

1,2,3,4,5,6,7 Computer Science and Engineering Department, MIT, Moradabad, India

¹reachtoprachi@gmail.com ²kanchansinghcs@gmail.com ³yashraj63951@gmail.com ⁴ybhatnagar15@gmail.com ⁵tyagiakshit100@gmail.com ⁶vaishali15yadav@gmail.com ⁷<u>vanshikachau26@gmail.com</u>

ABSTRACT: MetaMetrics is a cutting-edge web application revolutionizing website analytics in today's digital era. Leveraging the robust MERN stack, it empowers users with comprehensive insights to optimize marketing, boost traffic, retain visitors, and enhance SEO strategies. With customizable KPI tracking and real-time data updates, MetaMetrics enables informed decision-making tailored to specific website categories. Its user-friendly dashboard presents complex analytics in an accessible manner, bridging the gap between data and action. The project encompasses essential modules such as user registration, sample and comparison dashboard, payment integration, client documentation, and a robust data analytics dashboard. MetaMetrics caters to diverse industries, offering tailored solutions for e-commerce, healthcare, SaaS platforms, and influencers. By providing actionable insights and seamless integration, MetaMetrics is poised to become an indispensable tool for businesses and individuals seeking to thrive in the competitive online landscape. In summary, MetaMetrics represents a groundbreaking advancement in website analytics, empowering users to unlock the full potential of their digital assets and drive success in the digital age.

KEYWORDS: MetaMetrics, website analytics, MERN stack, comprehensive insights, marketing optimization, traffic boost, visitor retention, SEO strategies, customizable KPI tracking, real-time data updates, user-friendly dashboard, data-driven decisions, digital era, actionable insights, seamless integration, diverse industries, competitive online landscape, digital assets, success.

TRUTHGUARD TECHNOLOGY FOR RECOGNIZING UNAUTHENTIC TRANSFORMED IMAGES AND VIDEOS

¹ Himanshu Agarwal, ² Tushar Sachdeva, ³ Yash Rudra, ⁴ Vaibhav Malhotra, ⁵ Rishikesh Jha

¹ Associate Professor CS&E Deptt MIT, Moradabad ^{2,3,4,5} B.Tech Research Scholar CS&E Deptt MIT, Moradabad

Abstract: This project aims to tackle the challenges posed by deepfakes by proposing an innovative method for detecting them. It involves using the Xception model, which's a powerful convolutional neural network architecture known for its effectiveness in complex image classification tasks. The choice of Xception Net demonstrates our commitment to leveraging deep learning capabilities to distinguish between videos and those generated by AI. Additionally, we have given importance to the user interface of the project by utilizing the Python QT front end library creating a userfriendly platform. The detection process involves analyzing each video frame, in which Xception excels. By scrutinizing each frame, the model can accurately determine whether the video content is authentic or not. The integration of Python QT enhances the user experience making it easy and intuitive to use our detection application. In a society where false information and online dangers can lead to real world impacts this project highlights the significance of progress in managing the hazards linked to the use of artificial media. To sum up combining Xception Net and Python QT presents a remedy.

Keywords: Deep Learning, XceptionNet, Python QT, CNN.

Exploring A Healthcare Monitoring System For Advanced Digital Health By Using IOT

Himanshu Sharma^{1,a)}, Neha Gupta^{1,b)}, Anurag Singh^{2,c)}, Jay Dev Dixit^{2,d)}, Devansh Kumar^{3,e)}, Mohd.Ubais^{3,f)}

(a,b,c,d,e,f)Department of Computer Science & Engineering, MIT Moradabad, India

^{a)}cs.himanshu@gmail.com, ^{b)}discoverneha@gmail.com, ^{c)}anuragsingh26488@gmail.com, ^{d)}jaydevdixit354@gmail.com, ^{e)}devansh15091970@gmail.c om, ^{f)}moubais2143@gmail.com

ABSTRACT: The mix of Internet of Things (IoT) tech has pushed big progress in digital health. This study aims to look at and judge different IoT health monitoring systems in electronic health monitoring, trying to make digital health infrastructure work better, thus improving patient care and well-being with new methods. Starting with a full review of IoT-based digital health systems, this research shows the need for new solutions to fix the problems of old healthcare ways. Next, different IoT health monitoring setups, like wearable devices, smart sensors, and linked healthcare systems, are found and studied for their functions, data collection methods, and connectivity choices. This article looks at several new methods to make sure electronic health monitoring works well. It explores machine learning and deep learning to allow exact data study, timely health monitoring, and early spotting of health problems. The research also looks at edge computing and fog computing methods, which aim to make data processing better, cut down delay, and improve how IoT health monitoring systems perform. The research method includes a full review of past studies, plus case studies and checks of current IoT health monitoring setups. By comparing different IoT health monitoring setups, this study aims to find the best practices, uncover problems, and spot areas to improve. The results of this research are expected to drive new ways for IoT-based digital health monitoring, pushing the wide use of advanced tech in healthcare systems. These findings are expected to guide healthcare providers, researchers, and policymakers in setting up IoT health monitoring systems, improving patient outcomes, and allowing more personal healthcare services.

Keywords: Internet of Things health monitoring, wearable technology, intelligent sensors, machine learning, edge computing, fog computing, data security.

TRAFFIC RULES VIOLATION DETECTION AND CHALLAN GENERATION SYSTEM

Neha Kataria¹, Sanskar Varshney², Palak Chauhan³, Preetam Singh⁴, Mr. Vikas Kumar⁵, Dr. Neelaksh Sheel⁶

^{1,2,3,4} Student CSE 4th yr., Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad 244001, India

^{5,6} Associate Professor, Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad 244001, India

nehaakataria02@gmail.com¹, sanskarvarshney8650@gmail.com², palakchauhan468@gmail.com³, mr.psmahur111@gmail.com⁴, vikas mittal in@rediffmail.com⁵, sheelneelaksh@gmail.com⁶

ABSTRACT: The growing number of automobiles in cities can lead to traffic jams and shows that traffic infractions are getting worse these days in India and many other countries. This causes more accidents that could endanger people's lives as well as significant property destruction. Therefore, Traffic violation detection systems are required to address this issue and stop such unfathomable outcomes. The system presented in the research makes use of camera footage to automatically identify traffic rule violations. The proposed system unveils a blend of OpenCV, Convolutional Neural Networks (CNN), You Only Look Once (YOLO), and KD Tree Algorithms. It integrates OpenCV's precision in image processing, CNN's adeptness in feature extraction, YOLO's real-time object detection prowess, and the KD Tree's preciseness in nearest neighbor searches. Together, these elements form the core of an intricate system set to tackle the complex challenges of traffic violation detection and enforcement. Diving deep into the role of each component, we elucidate their symbiotic relationship in optimizing system accuracy, speed, and scalability.

NEXTJS E-COMMERCE WEB APPLICATION WITH BLOCKCHAIN PAYMENT PROCESSING

Mayank Pandey¹, Keshav chauhan², Lipakshi Rana³, Pushpendra⁴ and Amit Saxena⁵

1,2,3,4,5 Department of Computer Science and Engineering, Moradabad Institute of Technology

¹mayankpandeyofficial404@gmail.com, ² davrajs34@gmail.com, ³ lipakshirana2080@gmail.com, ⁴pushpendra7036@gmail.com, ⁵er.amitsaxena79@gmail.com

Abstract: In today's digital age, the significance of e-commerce websites has surged, especially with the growing demand for online shopping experiences. This research paper delves into the development of an e-commerce website using Next.js, a React framework known for its efficiency in building robust and scalable web applications. The integration of payment processing mechanisms is a crucial aspect of any e-commerce platform, ensuring secure transactions for both buyers and sellers. By leveraging Next.js along with payment processing solutions such as Stripe or PayPal, this paper explores the implementation process, addressing key challenges and considerations. Through thorough analysis and practical examples, this research provides insights into the architecture, functionality, and benefits of Next—Js— based e-commerce websites with seamless payment processing capabilities. Simultaneously, the research acknowledges and dissects the challenges associated with utilizing Next. is. These include issues related to version compatibility, the quality of available documentation, and the dynamic and evolving nature of the framework. In conclusion, the research offers a comprehensive evaluation of the advantages and disadvantages encountered while employing Next.js in conjunction with JavaScript, MongoDB, and React for fullstack development. The thesis serves as a valuable resource for developers seeking to leverage this technology stack, offering a nuanced understanding of the tradeoffs and best practices for better decision-making.

The Effect of Innovation Resistance and Face Recognition Payment System Features on Intention to Use

^{1]}Mohd Salman, ^[2] Prof. Dr. Rahul Kumar Mishra

[1] IFTM University, Moradabad, [2] IFTM University Moradabad

[1]salmank64@gmail.com, [2] rahulmishra@iftmuniversity.ac.in

Abstract: New technologies brought forth by the fourth industrial revolution, such facial recognition, have greatly improved customer convenience by being implemented in a variety of industries, including customs, attendance, and payment systems. Face recognition payment services have emerged as a result of the financial industry's recent use of this technology. In under five seconds, transactions are completed with this approach, which scans a person's face, analyses important facial traits, and compares the data with recorded information to verify identity. By examining the features of settlement systems and innovation resistance, this research seeks to comprehend the uptake of face recognition payments and any opposition to their application.

Contactless transactions, dependability, security, and convenience are all provided by the facial recognition payment system. Using Smart partial least squares 2.0 structural equations to assess a survey of Chinese consumers, the following outcomes were obtained: User innovation resistance is adversely connected with system convenience, dependability, and security. On the other hand, the system's contactless feature helps reduce users' aversion to innovation.

Traffic Sign Board Recognisation And Voice Assisted System: Using Convolutional Neural Network

¹Bindu Rani, ²Prateek Singh, ³Ishita Gupta, ⁴Ajhar Ali, ⁵Dikshant Kumar, ⁶Vaibhav Yadav

Department of Computer Science and Engineering (AIML), Moradabad Institute of Technology, Moradabad, India

a)Prateek Singh: prateeksingh0809@gmail.com

Abstract: Traffic sign recognition is necessary for intelligent transportation systems to offer road safety and traffic control. In this paper, we propose a Convolutional Neural Networks (CNN) based traffic sign board recognition system with a voice-assisted interface. The CNN architecture for image classification in the system is trained and evaluated using the German Traffic Sign Benchmarks Dataset. Additionally, a voice-assisted system is put into place to provide vocal input in accordance with the recognized traffic sign. The proposed method exhibits promising results in terms of accurately recognizing and comprehending traffic signs, which might enhance road safety and driver assistance.

Keywords: Traffic sign recognition, Convolutional Neural Networks, Voice assistance, Intelligent transportation systems

A REVIEW ON SENTIMENT AND EMOTION ANALYSIS FROM SOCIAL MEDIA TEXT

Harihar Nath Verma^{1*}, Sanjay Kumar Malik²

^{1*}Research Scholar, USIC&T, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India,

¹hnvermagwl@gmail.com

²Professor, USIC&T, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India,

²skmalik@ipu.ac.in

ABSTRACT: Sentiment analysis is an area in the field of Natural Language Processing (NLP), where text, audio or video data is analyzed for recognition of a person's interest and likeliness. Its basic purpose is to obtain the inclination of people towards a lesson, product, a politician, a service. It also helps in identification of positive, negative or neutral feeling of persons. This can be achieved using a dataset and some sentiment and emotion analysis tool. The dataset itself can be of varying nature, like text-based, audio, video or a combination of multiple nature. Sentiment analysis can be used as a customer feedback for a product or service to identify the quality of a product of service. In this paper a survey on various approaches available in the literature for sentiment and emotion analysis has been provided. Such surveys are helpful for businessmen to enhance the quality of their product or service, and hence their business. Nowadays sentiment analysis is widely used in subjective and unstructured dataset also. This paper reviews the approaches for sentiment and emotion analysis over the textual data from social media platforms.

KEYWORDS: Sentiment Analysis, Emotion Analysis, Natural Language Processing, Textual Data Mining, Social-Media, Web Mining

PREDICTION OF LUNG CANCER AND COVID-19

¹ Deepali Agarwal, ²Mukul Kumar, ³ Mohd Umair Khan, ⁴ Nagendra, ⁵ Mohammed Wasil

1,2,3,4,5 Computer Science and Engineering Department, MIT, Moradabad, India

¹formyscholars4u@gmail.com, ²mk8271148@gmail.com, ³uk8065@gmail.com ⁴palnishu32@gmail.com, ⁵ mohdwasil063@gmail.com

ABSTRACT: In recent years, there has been a growing trend in the use of deep learning (DL) and Convolutional Neural Network (CNN) algorithms for COVID-19 and lung cancer prediction. These prediction models' main goal is to improve prognosis and early identification, which might lead to better patient outcomes and healthcare management techniques. By analyzing complicated medical imaging data linked to COVID-19 and lung cancer, DL and CNN approaches use sophisticated computer algorithms to offer important insights on the course, severity, and response to therapy of these diseases.

DETECTION OF CHRONIC KIDNEY DISEASE

Shahid Raja¹, Tushagra Rajpoot², Dhruv Chauhan³, Dhruv Raheja⁴, Saurabh Saini⁵

1,2,3,4,5 Computer Science and Engineering Department, MIT, Moradabad, India

¹ shahidraja6307053605@gmail.com,² tushagrarajpoot@gmail.com, ³dhruvchauhan1830@gmail.com, ⁴ rahejadhruv80@gmail.com, ⁵ <u>saurabhsaini02102001@gmail.com</u>

Abstract: Chronic Kidney Disease is a global health related issues rising of prevalence or increasing of population, now my group takes a chance to create a project which is based on the early detection of the disease. In this project there the many challenges coming when the making the project which is difficult to deals with the algorithms, collecting of the information and knowledge about the kidney related diseases.[1] This research paper explores about the application of deep Learning technology, and the adding of different models like Convolutional Neural Networks and Recurrent Neural Networks, for the early detection of Chronic Kidney Disease. This proposed model analyses or diverse the patient data, combination of clinical measurements, test reports, medical history, etc. Most importantly the features of the research including of creating the dataset, pre-processing steps for the detection, training of model, classification, easy to use, user friendly image upload interface, minimal maintenance, and reliable results. Chronic Kidney Disease (CKD) is a healthcare department challenge because this an asymmetrical nature of early stage of the chronic disease, this project leads to serves all the patients who are suffering from Kidney related disease. This project has the many advantages like cost efficient, dependable, operational, regularity, provide insights into the technical risk aspects of deploying in a system etc. [2][3] The final achievement of this CKD project is to give help in medical department with the help of modern technology like Deep Learning algorithm, CNNs, RNNs etc. This gives the fast result and more accuracy of the disease. [4]

Keywords: CNN, RNN, MobileNet.

CARDIOVASCULAR RISK PREDICTION USING RETINAL FUNDUS IMAGE AND DEEP LEARNING

Suraj Prasad Kalauni^{1,a)} Sidra Tul Muntha^{2,b)} Rajat Chauhan^{3,c)} Seha Prajapati^{4,d)} Ritik Tyagi^{5,e)} Ajeet Singh^{6,f)}

^{1,2,3,4,5,6}Moradabad Institute of Technology, Moradabad, UP, India

a) spkalauni7789@gmail.com
b) stulmuntha20@gmail.com
c) rajatch671@gmail.com
d) sehaprajapati462@gmail.com
e) tyagiritik321@gmail.com
f) ajeetsingh252@gmail.com

Abstract: Cardiovascular diseases (CVDs) pose a global health challenge, necessitating accurate risk prediction strategies. This research introduces a novel approach, utilizing retinal fundus images and advanced deep learning techniques for enhanced cardiovascular risk assessment. Addressing the limitations of traditional risk factors, our method delves into retinal microvasculature, offering a precise and personalized predictive model. Leveraging the Cleveland Heart Disease dataset and machine learning algorithms, we focus on 14 pertinent attributes for heart attack diagnosis, highlighting the shortcomings of current clinical decision-making processes.

In our proposed system, the integration of retinal fundus images, processed with TensorFlow and OpenCV, yields promising results in distinguishing risk categories. The chosen deep learning models showcase notable accuracy, emphasizing the potential to transform preventive strategies. This research establishes a foundation for innovative cardiovascular risk prediction, marking a significant advancement in healthcare practices and offering a unique perspective for future research in cardiovascular health.

KEYWORD: Deep Learning, CNN, RNN, Cardiovascular Diseases, Algorithm.

ON FLY CONVERSION

¹Sarthak Srivastava, ²Anurag Malik, ³Sahil Rastogi, ⁴Pratham Vyas, ⁵Om Bajpai

²Associate Professor Department of Computer Science and Engineering Moradabad Institute of Technology ^{1,3,4,5}Scholar Department of Computer Science and Engineering Moradabad Institute of Technology, India

¹sarthakmbd81@gmail.com, ²anurag_malik@rediffmail.com, ³sahilrastogi817@gmail.com, ⁴prathamvyas2010@gmail.com, ⁵ombajpai911@gmail.com

Abstract: The proposed approach focuses on the recognition of audio queries that include a combination of words in two different languages, namely Marathi ,Malayalam ,Bengali, Hindi and English. The innovation in the presented approach lies in the utilization of a next Word Prediction model alongside a Deep Learning speech recognition model to identify and convert the input audio query into text accurately. Additionally, another method is suggested to address the problem of multilingual speech recognition and translation, which involves implementing cosine similarity between the audio features of words to achieve fast and precise recognition. The authors manually generated the dataset used for training and testing the models since no pre-existing audio and text dataset contained sentences comprising a mixture of Kannada and English. The combination of the DL speech recognition model with the Word Prediction model yields an accuracy rate of 71% when tested on the in-house multilingual dataset. This method surpasses, other existing translation and recognition solutions for the same test set. Multilingual translation and recognition represent significant challenges since people often tend to speak using a combination of languages. Addressing this problem could effectively eliminate the language barrier and foster better and more comfortable communication between individuals.

LITERATURE REVIEW ON RECOMMENDER SYSTEM FOR CROP PREDICTION THROUGH COLLABORATIVE FILTERING USING MACHINE LEARNING

Ruchika Gupta^{1,2, a)},Ranjana Sharma^{3, b)}

¹Assistant Professor, Moradabad Institute of Technology, Moradabad, India, 244001 ² Research Scholar, College of Computing Sciences & IT, Teerthanker Mahaveer University, Moradabad 244001 ³ Associate Professor, College of Computing Sciences & IT, Teerthanker Mahaveer University, Moradabad 244001

Ranjana.computers@tmu.ac.in, Ruchikagupta.mit@gmail.com,

ABSTRACT: An extensive investigation of the use of machine learning (ML) techniques in crop prediction is presented in this research study. Given the problems posed by climate change and the growing worldwide need for food, machine learning (ML) presents a possible path for improving agricultural output estimates. The study examines the approaches, resources, difficulties, and possible uses of machine learning in the context of agricultural forecasting.

KEYWORDS: Machine Learning, Crop Prediction

Gas Leakage and Gas Level Indicator

¹Zubair Iqbal, ² Yasar Khan, ³ Udit Gupta, ⁴ Varun Sharma, ⁵ Syed Quaid Hussain, ⁶ Jaun Naqvi

¹Assistant Professor, ^{2,3,4,5,6}Scholar ^{1,2,3,4,5,6}Computer Science & Engineering Department, ^{1,2,3,4,5,6}Moradabad Institute of Technology, Moradabad, U.P., India

Abstract: Home fires have been taking place frequently and the threat to human lives and properties is growing in recent years. Liquid petroleum gas (LPG) is highly inflammable and can burn even at some distance from the source of leakage. Most fire accidents are caused because of a poor-quality rubber tube, or the regulator is not turned off when not in use. Therefore, developing the gas leakage alert system is very essential. Hence, this paper presents a gas leakage alert system to detect the gas leakage and to alarm the people onboard.

Keywords: Liquid petroleum gas, Gas sensor, Leakage

Comparative Analysis of Deep Learning Approaches: Real Time Crowd Density Estimation

Mr. Nitin Kumar Saini¹, Dr. Ranjana Sharma²

Research Scholar¹, Teerthanker Mahaveer University, Moradabad (U.P.), India Associate Professor², Teerthanker Mahaveer University, Moradabad (U.P.), India

Email: nitin.scholar@tmu.ac.in¹, ranjana.computers@tmu.ac.in²

ABSTRACT: These days, a lot of surveillance and emergency systems are closely related to crowd control, which makes things difficult, especially when the crowd size is unknown. This problem provides as a springboard for investigating density- or count-based crowd estimating techniques. A key issue in many applications, such as traffic management, biology, security, and surveillance, is the density of populated places. In addition to giving a thorough overview of the various methods and strategies used in earlier research to estimate crowd size, this study also seeks to identify the datasets that were used in these studies. A comparative study of relevant works is provided, highlighting the advantages and disadvantages of each methodology. This identifies important directions for future research in the field of congested area estimate.

KEYWORDS Deep Learning, CNN, Crowd Counting

Eco-Friendly Innovations In Electronics: A Comprehensive Analysis Of Green Technologies

Rachiyata Johari

STUDENT, DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING, MIT, MORADABAD

E-Mail id – <u>rachiyatajohari1@gmail.com</u>

ABSTRACT: The paper investigates eco-friendly materials, energy-efficient designs, and waste management strategies, providing insights into the environmental impact and future prospects of green electronics, as the survey conducts approximately 78% -80% electrical or electronics—waste of India is not being collected or disposable by the e-waste unit. In the electrical or electronics-waste category, India is the third largest producer of e-waste in the world, according to the data 6tonnes of e-waste in last year is expected and burgeoning number shows that it rise to 8 million by 2025. Comparison to other countries recycling rate of India is 3% whereas in Japan- 27%, USA -21%, China-80% and it is a huge gap. The factor responsible are lack of formal e-waste recycle infrastructure and ground level awareness,94% e-waste of India is recycle through the informal method by the sector which is also used as hazardous method.

KEYWORDS: "Sustainable material in electronics", "Life cycle analysis", "Energy - Efficient", "Supply chain Sustainability ", "Eco packaging", "Circular Economy Adoption".

Crptography in Cyber Security

¹ Tushar Gupta, ² Gopal Singh Kushwaha, ³ Dr. Ekata Gupta,

^{1,2}Student, Guru Nanak Institute of Management ³Faculty, Guru Nanak Institute of Management

ABSTRACT: This research paper provides a comprehensive review of cryptography, focusing on the principles, applications, challenges, and future prospects of cryptography. Taking a data driven approach, this article explores the role of cryptography in protecting digital information, reviews cryptographic techniques, and discusses the importance of cryptographic techniques in ensuring data security. In this paper, cryptography which is one of the main methods used in information protection is discussed highlighting its originality and the methods used in the early days and in modern days. Data includes documents, images, and information necessary to support exploration and visualization. Security has become increasingly important in many industries in recent years. This does not mean that new information should be protected; This. It dates back to World War I and even the days of Caesar, when encryption was used to send data securely between servers.

Navigating The Promise And Perlis Of "DALLE"

¹Deeptangshu Sarkar, ²Gurvinder Singh, ³Nilesh Kumar Dokania

^{1,2} Student, Guru Nanak Institute of Management, ³ Assistant Professor, Guru Nanak Institute of Management

ABSTRACT: DALL-E, an innovative AI model developed by OpenAI, redefines the landscape of text-toimage synthesis through its groundbreaking use of transformer architecture. Leveraging a vast dataset during its training process, DALL-E possesses the ability to interpret textual prompts and generate an array of visually compelling and contextually relevant images. This paper provides a comprehensive exploration of DALL-E's architecture, training methodologies, and real-world applications. It elucidates the practical utilization of DALL-E in creative content generation, design automation, and storytelling. Furthermore, the paper delves into the challenges and potential drawbacks inherent in DALL-E's implementation. Through an exhaustive examination, this abstract illuminates the transformative potential of DALL-E in reshaping the boundaries of AI-driven image synthesis and its implications for future advancements in the field.

Machine Learning Unveiled: An Extensive Overview of Techniques And Applications

Darpan Gupta^{1, a),} Chandra Pratap Singh^{2, b)}, Doshant Verma^{3,c)}, Farhat Ali Khan^{4,d)}, Jitendra Kumar^{5,e)}, Pramod Bisht^{6,f)}, Vipul Kumar Vishnoi^{7,g)}

1,2,3,4,5,6,7 Research Scholar, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India

a) darpan.047183@tmu.ac.in, b) chandra.047184@tmu.ac.in, c) doshant.047211@tmu.ac.in, d) farhat.047182@tmu.ac.in, e) jitendra.047185@tmu.ac.in, f) pramod.047212@tmu.ac.in, g) vipul.044814@tmu.ac.in

Abstract: This paper functions as an extensive overview, covering a diverse array of machine learning algorithms and emphasizing the pervasive nature of machine learning in our daily experiences. Whether individuals are actively aware or unaware, routine interactions with machine learning applications are commonplace – from tailored product suggestions during online shopping to the automatic organization of photos on social networking platforms. The central aim of this paper is to introduce readers to numerous prevalent machine learning algorithms, equipping them with a robust foundational comprehension of the functionalities of these algorithms and their crucial significance in modern scenarios.

Keywords: Optimization, machine learning, artificial learning

MEDIGRAPH – EEG, ECG, EMG & EOG DIAGNOSTICS SYSTEM USING ARDUINO.

Manish Gupta¹, Manoj Kumar Singh², Mohd Faraz³, Mohammad Saad⁴, Ibad ur Razzaq⁵, Mohd Zaid Amaan⁶

¹ Professor, CS&E Department, Moradabad Institute of Technology, Moradabad, India ² Associate Professor, CS&E Department, Moradabad Institute of Technology, Moradabad, India ^{3,4,5,6} BTech 4th Year, CS&E Department, Moradabad Institute of Technology, Moradabad, India

¹ manishymca2007@gmail.com, ² manojaswal1982@gmail.com ³ mohd.faraz.abc@gmail.com, ⁴ msaad5458@gmail.com, ⁵ ibad00769@gmail.com, ⁶zaidamaan86@gmail.com

Abstract: This research paper details the development of an accessible and cost-effective diagnostic test system capable of performing four biomedical tests: EEG, ECG, EMG, and EOG. Utilizing Arduino and the Bioamp EXG Pill module, the system integrates modules for data acquisition, signal processing, communication, user interface design, diagnostic algorithms, and rigorous testing. The Hardware Integration Module ensures reliable component connection and power supply, while Signal Processing designs algorithms for preprocessing and feature extraction from raw data. The Data Acquisition and Communication Module facilitates real-time data transfer and storage. A user-friendly interface is provided by the User Interface Module, and machine learning in the Diagnostic Algorithm Module classifies biomedical patterns for accurate diagnosis. The Testing and Validation Module rigorously assesses the system's reliability and accuracy against existing methods. Comprehensive documentation, including hardware schematics and manuals, is included. This project aims to offer an efficient diagnostic tool with significant healthcare applications.

Keywords: neurological conditions, cost-effective solution, EEG ECG EMG EOG diagnostic test, bioamp exg pill

Multiple Disease Detection in Human Using Deep Learning.

Mohammad Ilyas^{1,a)}, Ali Samin Raza^{2,b)}, Chaitanya Dhiman^{2,c)}, Fiza Zehra^{2,d)}

¹Asst Professor, Computer Science & Engineering Department, Moradabad Institute of Technology, Moradabad, India ²4th Year, Computer Science & Engineering, Moradabad Institute of Technology, Moradabad, India

mohd.passion@gmail.com, b) alisamin098@gmail.com, c) dhiman777chaitanya@gmail.com, d) fizazehra0213@gmail.com

Abstract: As progress in medical technology and artificial intelligence continue to shape the healthcare landscape, this project presents a comprehensive solution for multiple disease detection in humans. Focusing on the integration of deep learning techniques, specifically CNNs, the project introduces a web-based platform designed to streamline the diagnostic process for brain tumour and Alzheimer's disease [1] [2].

The system incorporates a user-friendly interface accessible to both healthcare professionals and patients. Patients can select the specific disease category (brain tumour or Alzheimer's), and input detailed information including personal data, symptoms, medical history, and crucially, MRI images.

For healthcare professionals, the platform provides a centralized portal allowing them to access and analyse patient information securely. The deep learning models, trained on extensive datasets, facilitate accurate and rapid disease prediction based on the provided MRI images. This predictive capability empowers healthcare and treatment plans.

The system further supports efficient communication between healthcare professionals and patients, enabling appointment scheduling based on the severity and urgency of the diagnosed condition.

KEYWORDS: Brain Tumour and Alzheimer's Detection.

SHOWBOOK: An Online Movie Ticket Booking Solution

¹ Deepali Agarwal, ²Mohd Nihal Khan, ³ Mohd Qadir Huda, ⁴ Mohammad Shahvez, ⁵ Piyush Saini

1,2,3,4,5 Computer Science and Engineering Department, MIT, Moradabad, India

¹ <u>formyscholars4u@gmail.com</u>, ² <u>nihalkhan04613@gmail.com</u>, ³ mqh4862@gmail.com, ⁴mshahvez58@gmail.com, ⁵piyushsaini01158578@gmail.com

ABSTRACT: The objective of the project is to enable users to book cinema tickets online. The Ticket Reservation System (Show Book) is an internet-based application accessible throughout the net by anyone with a net connection. This application enables users to reserve tickets. A cinema hall provides an app where any internet user can access this online ticket reservation system. Users need to log in to the system and use a credit card for ticket booking. Tickets can either be collected at the counter or mailed to their respective email ids. Watching movies with family and friends in theaters is one of the best forms of entertainment after a hectic schedule. However, the excitement is lost while standing in long queues for hour or two to book tickets. The website provides complete information regarding currently running movies on all screens, with details of show timings and available seats. Ticket reservations are made using credit cards and can be canceled if needed. Our online ticket reservation system is one of the best opportunities for those who cannot afford enough time to stand in long queues for ticket reservation. People can book tickets online at any time of the day or night.

Keyword: User-Centered Design, Technology Acceptance Model,DFD

AGRONOID: An Agriculture Robot

Shubhangi Rawat¹, Satyam Singhal², Sanskar Saxena³, Aditya Chauhan⁴, Dr. Neelaksh Sheel⁵

Author Affiliations

^{1,2,3,4} Student CSE 4th yr., Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad 244001, India

⁵ Associate Professor, Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad 244001, India

Author Emails

shubhangirawat18@gmail.com1, satyamsinghal26@gmail.com2, <u>saxena.sanskar92@gmail.com</u>3, aadityachauhan6395@gmail.com4, sheelneelaksh@gmail.com5

ABSTRACT: In India, agriculture is the backbone of the economy, employing over 60 percent of the population. However, the sector faces labor shortages as interest grows in developing autonomous technologies like robots for farming. The Advance AGRONOID project seeks to address this issue through an agricultural robot designed to minimize human labor and maximize efficiency in key tasks like sowing, drilling, and soil analysis. By leveraging automation, this robot can conduct essential agricultural functions accurately and rapidly while protecting soil fertility and worker safety from hazardous conditions. The overarching goal is an autonomous, multifunction farm robot controlled through the Internet of Things to sustainably strengthen Indian agriculture.

KEYWORDS: Robot, Wireless Technology, Smartphone, Seed mapping.

WEBSITE VULNERABILITY SCANNER

Ruchika Gupta^[1] Priyank Chauhan^[2]

Astt. Professor (2000820100109)

Department of Computer Science Department of Computer Science
and Engineering, and Engineering,

Moradabad Institute of Technology, Moradabad Institute of Technology,

Moradabad, India Moradabad, India

Email: ruchikagupta.mit@gmail.com Email: priyankchauhan62@gmail.com

Priyok Roy^[3] Aditya Mudgal^[4]
(2000820100110) (2000820100009)

Department of Computer Science Department of Computer Science
and Engineering, and Engineering,

Moradabad Institute of Technology, Moradabad Institute of Technology,
Moradabad, India Moradabad, India

Email: deepuroy626@gmail.com Email: ap395063@gmail.com

Rini Shrivastava^[5] Vidushi Chaudhary^[6]
(2000820100115) (2100820109004)

Department of Computer Science Department of Computer Science and and Engineering, Engineering

Moradabad Institute of Technology, Moradabad Institute of Technology, Moradabad, India

ABSTRACT: Due to the rapid advancement of the Internet, cybersecurity concerns are becoming increasingly common. Hackers exploit vulnerabilities on the Internet to access websites, leading to various security incidents. An assessment tool that scans for security vulnerabilities on websites is called a website vulnerability scanner. There are several problems with existing web vulnerability scanners, including limited scalability, bloated software, and inadequate scanning accuracy. Traditional scanners typically use crawlers to retrieve a website's URL, send an attack request with a payload to the website for recovery, and then generate an appropriate vulnerability report if the payload is active. Applying a vulnerability scanner to detect website vulnerabilities proves useful as it focuses only on fixing these security issues. This particular scanner stands out from the rest by not having the aforementioned problems described in detail in this document. Keywords - SQL Injection, Cross Site Script, Vulnerability, Cross Site Script, Scanner, CV Scan, Scanner, Malware Detect, OWASP ZAP.

Traffic Sense: Visionary Traffic Control

Prabal Bhatnagar^{1,a}, Aditya Saraswat^{2,b}, Abhilash Sharma Paras^{3,c}, Abhay Chauhan^{4,d}, Aryan Khanna^{5,e}, Divjot Singh Sahi^{6,f}

Department of Computer Science and Engineering, Moradabad Institute of Technology, Moradabad, India^{1,2,3,4,5,6}

a) Prabal Bhatnagar : prabal.bhatnagar22@gmail.com b) Aditya Saraswat : adityasaraswat2@gmail.com c) Abhilash Sharma Paras : abhilashsharma425@gmail.com d) Abhay Chauhan : chauhanabhay89212@gmail.com e) Aryan Khanna : khannavansh2002@gmail.com f) Divjot Singh Sahi : divjotsahi08@gmail.com

Abstract: In order to provide efficient mobility and minimize congestion, effective traffic management is essential in metropolitan settings. The real-time traffic simulation project presented in this paper aims to precisely calculate the number of vehicles in each of a roadway's four lanes and prioritize the lane with the most vehicles. In order to guarantee prompt response to urgent circumstances, the simulation also recognizes and prioritizes lanes for emergency vehicles, such as ambulances. The suggested simulation has a number of advantages, such as more effective traffic control, less traffic, and better emergency response times. Authorities are empowered by the simulation to make well-informed decisions that improve traffic flow and guarantee the safety and wellbeing of all road users by prioritizing lanes based on vehicle count and recognizing emergency vehicles. All things considered, this research shows how real-time traffic simulations may be used to effectively count vehicles, prioritize lanes, and detect emergency vehicles. This helps to make traffic management systems in cities more effective and responsive. Keywords—YOLO, Pre-Processing, Traffic Light Control, Machine Learning, Vehicle Detection, Intelligent Traffic Management Systems (ITMS)

Plant Leaf Disease Detection System

Prachi Agarwal¹, Shiwani Agarwal², Harsh Chauhan³, Hemant Ahlawat⁴, Gautam Prakash⁵,
Ayushmaan Singh⁶, Garvita Tyagi⁷

1,2,3,4,5,6,7 Computer Science and Engineering Department, MIT, Moradabad, India

Ireachtoprachi@gmail.com 2shiwani.agarwal310@gmail.com 3chauhan2005harsh@gmail.com 4Happyahlawat808@gmail.com 5Gautam2000prakash@gmail.com 6Ayushmaans459@gmail.com 7garvitatyagi2@gmail.com

Abstract: This research paper introduces a comprehensive methodology for the detection of plant leaf diseases employing deep learning techniques in image analysis. The proposed system amalgamates a robust deep learning model for precise disease identification, a well-structured front-end facilitating user interaction, and a scalable back-end for efficient data processing. Leveraging the growing availability of image datasets, particularly the Plant Village dataset, and a deep convolutional neural network is trained, achieving notable accuracy in recognizing various crop species and their associated diseases. The system not only showcases technical viability but also tackles practical challenges in automating plant disease diagnosis. Through experimental evaluation, the system's effectiveness is demonstrated, laying a solid foundation for its potential application in agricultural domains [1]. These findings significantly contribute to ongoing endeavors aimed at augmenting food production quality and curbing economic losses through early and accurate plant disease detection. The insights derived from this research are distilled from the various sources, shedding light on utilization of deep learning in plant disease detection and advancement of the mobile-based systems for the automated diagnosis. This abstract encapsulates the key elements of the research paper, including deep learning utilization, the fusion of front-end and back-end components, and the practical ramifications of the proposed plant leaf disease detection.

Crop Recommendation System Using Machine Learning

Ms. Ruchika Gupta^{1,3,(a)}, Tushar Singh^{2,3,(b)}, Rachit Tiwari^{2,3,(c)}, Rohit Sanwal^{2,3(d)}, Ujjwal Arya ^{2,3,(e)}

Author Affiliations

¹Asst. Professor

²B. Tech 4th year

³Department of Computer Science & Engineering Moradabad Institute of Technology Moradabad, affiliated by Dr. A. P. J. Abdul Kalam Technical University, Lucknow

Author Emails

- (a) ruchikagupta.mit@gmail.com
- (b) tusharsingh07a@gmail.com
- (c) rachit7088tiwari@gmail.com
- (d) seriousblack770@gmail.com
- (e) aryabhavishya1@gmail.com

Abstract - Crop Recommendation systems have become increasingly important in modern agriculture to assist farmers in making informed decisions about crop selection. This paper presents a Crop Recommendation system utilizing Machine Learning techniques. The system analyzes various factors such as soil type, climate conditions, and historical crop data to provide personalized crop recommendations to farmers. The system aims to enhance agricultural productivity and optimize crop yields by leveraging Machine Learning algorithms.

Keywords—Crop Recommendation, Machine Learning, Agriculture, Soil Analysis, Climate Conditions, Crop Yield Optimization

SKIN DISEASE DETECTION SYSTEM USING CNN TECHNOLOGY FOR DETECTION OF SKIN DISEASES USING AN EfficientNetB0 CNN Model

¹Himanshu Agarwal, ²Vibhor Kumar Vatsa, ³Vinod Tiwari, ⁴Vineet Chaudhary, ⁵Yuvraj Singh

¹Associate Professor, CS&E Deptt MIT, Moradabad ^{2,3,4,5} B.Tech Research Scholar, CS&E Deptt MIT, Moradabad

Abstract: This endeavor focuses on addressing the issues in identifying skin conditions through a new method utilizing the EfficientNet B0 convolutional neural network model integrated with Flutter. The selection of Flutter reflects our dedication to creating applications that can be used on multiple platforms, offering ease of access for users on different devices. Our project makes use of deep learning to precisely categorize various skin diseases from dermatological images. By harnessing the capabilities of the EfficientNet B0 model, renowned for its ability to capture complex patterns and features specific to skin issues, we improve the precision of disease identification. The incorporation of Flutter results in a user-friendly interface, allowing individuals to effortlessly capture and examine images of their skin. The system processes these images through the EfficientNet B0 model to determine the presence and type of skin disease. In a world where timely and accurate diagnosis is crucial for effective treatment, this project highlights the significance of progress in leveraging deep learning techniques within the Flutter framework for efficient dermatological diagnostics. To summarize, the pairing of EfficientNet B0 and Flutter offers a hopeful answer for identifying skin conditions, offering healthcare options to a larger population.

Keywords: Deep Learning, Convolutional Neural Network, CNN, EfficientNet B0, Skin Diseases, Dermatological Image Analysis, Flutter.

Integrated IoT System for Sustainable Agriculture

¹Mr. Vikas Bhatnagar, ² Ms. Sakshi Singh, ³Mohd Shavez Ali, ⁴Anuj Singh, ⁵ Ikshit Rastogi, ⁶ Nishant Pundir

^{1,2}Assistant Professor ^{3,4}.5.6 B.Tech (Computer Science and Engineering)

vbmit1979@gmail.com, <u>er.sakshi.singh911@gmail.com</u>, shavezkhan1651@gmail.com, anujsingh90275@gmail.com, <u>ikshitrastogi23@gmail.com</u>, <u>pundirnishant80@gmail.com</u>

Abstract: Integrated IoT System for Sustainable Agriculture is an aborning topic in this materialistic world. This paper describes in earlier days framer want to calculate the readiness of soil and impacted doubts to make of the kind of yield They did not consider the Stickiness, level of water, Crop Monitoring / Management and Impact of Soil which Moisture and atmosphere condition Which was difficult to a Farmer, Progressively the IOT is renovating the agribusiness engaging the agriculture. The Feature of the Paper includes the development of the system that can Monitoring crop temperature, humidity, moisture and water level management and even the movement of animal which may destroy the crop an agriculture field through sensors using Node MCU board. Keywords: - IOT, Automation, Agriculture, Esp8266 and Water Motor

Face Recognition Attendance System Using Python

Prachi Gupta¹, Tushar Olakh², Tushar Sharma³, Tanya Bhatnagar⁴, Utkarsh Tomar⁵

¹Assistant Professor, ^{2,3,4,5}Scholar

^{1,2,3,4,5}Computer Science & Engineering Department,

^{1,2,3,4,5}Moradabad Institute of Technology, Moradabad, U.P., India

Abstract: Detecting faces in various conditions, such as different expressions, lighting, and obstructions, has been a challenge for years. Recent studies demonstrate that deep learning techniques can achieve remarkable performance in identifying different objects and patterns. However, face detection in unconstrained environments remains difficult due to varying poses, lighting conditions, and occlusions. While recognizing individuals from images has gained popularity through mass media, it is less reliable than fingerprint or retina scanning. This paper proposes a deep cascaded multistage framework that leverages inherent correlations to enhance face detection performance. Specifically, the framework employs three layers of carefully designed deep convolutional networks in a cascaded structure to predict both face and landmark regions in a coarse-tofine manner. Additionally, a novel online hard sample mining method is introduced to automatically improve performance without manual pattern selection.

Women Empowerment through Automation and Innovation

Anushka Gupta¹, Modika Gupta²

¹Department of Computer Science and Engineering ²Department of Applied Sciences

¹anushkagupta0306@gmail.com, ²modikagupta@gmail.com

Abstract: This research explores how technology, especially automation and innovation, can empower women. We live in a time of rapid technological progress, and this paper looks at the connection between women's empowerment and these advancements. The fourth Industrial Revolution, with its focus on technology like automation and artificial intelligence, offers unique opportunities to change how society sees gender roles. Our paper aims to understand how these changes can make the world more equal for women.

In simple terms, technology can create new jobs for women and help them join markets worldwide. The fourth Industrial Revolution wants to make sure women get fair pay, equal opportunities for work, and access to education.

Overall, this research shows how technology can be a powerful force for making sure women have more opportunities. By looking at real examples and considering ethical concerns, we want to contribute to making the future more equal for everyone.

Keywords: Women Empowerment, Technology, Automation, Innovation, Gender Equality, Digital Era, Economic Independence, Decision-Making, Case Studies, Societal Impact

IoT-Based Smart Soil Nutrient Detector

Ruchika Gupta 1,a , Aman $(2000820100018)^{1,b}$, Piyush Gupta $(200820100103)^{1,c}$, Ranjeet Kumar $(2000820100114)^{1,d}$, Shubham Chauhan $(2000820100132)^{1,e}$

Author Affiliations
Moradabad Institute of Technology and Management

Author Emails
Ruchikagupta.mit@gmail.com a ak5654707@gmail.com b piyushgupta01902@gmail.comc
saurabhkumar1956@gmail.com d scha7894@gmail.come

Abstract: This research project introduces an innovative approach to soil nutrient management in agriculture through the development and implementation of an IoT-based smart soil nutrient detector system. The system is designed to collect soil nutrient data in realtime from sensor nodes deployed in the field and transmit this information directly to a dedicated mobile application. Leveraging the capabilities of Internet of Things (IoT) technology, the system offers farmers and agricultural professionals unprecedented access to timely and accurate soil nutrient information, enabling informed decision-making and precision farming practices. Key components of the system include strategically deployed sensor nodes equipped with sensors capable of measuring essential soil nutrients such as nitrogen, phosphorus, and potassium. These nodes are interconnected through a robust communication network, facilitating seamless data transmission to a central processing unit. The central unit processes the incoming data, performs real-time analysis, and communicates the results to the user's mobile device via a dedicated mobile application. The mobile application serves as a user-friendly interface, providing farmers with immediate access to vital soil nutrient information directly on their smartphones or tablets. Through the application, users can visualize soil nutrient levels, track historical data trends, and receive timely notifications and recommendations for optimal fertilization practices. Moreover, the application facilitates data-driven decision-making by allowing users to adjust fertilization schedules and nutrient application rates based on real-time soil nutrient measurements.

Keywords: IOT, NPK Sensor, DHT11, ESP-32 Microcontroller, RS485

Keywords:

Glass Virtual Try-On

¹ Manu Sharma, ² Mr. Pawan Kumar Singhal, ³ Janit Kumar, ⁴ Prateek Singh

Author Email

<u>Manusharma8194@gmail.com</u>, <u>Singhal.pavan@gmail.com</u>, <u>Janitkumar5555@gmail.com</u>,

<u>Prateekchauhan259@gmail.com</u>

Abstract: Virtual try-on technology allows people to explore the look of accessories, makeup, hair extensions, hair color, clothing and much more for themselves. Virtual try-on offers many advantages over real attempts, speeding up the process gives you the opportunity to test hundreds of products without the need to access a real store. The test process is performed on a reconstructed 3D face from a embedded image that allows the user to see the visible face and mirrors with different views. The process is fully automatic and does not require the user to provide anything other than the image and the name of the glass. Keywords: Virtual try-on, Virtual glasses, Augmented reality

Crop Disease Identification using Crop Agronomy with Machine Learning

^{1st} Ashish Bishnoi, ^{2nd} Dr. Shambhu Bharadwaj, ^{3rd} Dr. Surjeet Dalal

¹Research Scholar, Computer Applications *CCSIT, Teerthanker Mahaveer University*Moradabad, India

²Associate Prof. & Head *CCSIT, Teerthanker Mahaveer University*Moradabad, India

³ Professor, *dept of Computer Science*Amity University
Gurugram, India

¹ashishbishnoi05@gmail.com ²shambhu.bharadwaj@gmail.com ³profsurjeetdalal@gmail.com

Abstract: Crops in India suffer from various kinds of diseases that impact the overall yield production. These diseases not only cause less production per hectare but also affect the quality of yield. Modern techniques available in Information technology specifically Machine Learning and Deep Learning were used to improve the yield both in terms of quality and quantity could be done. The Machine Learning model developed for disease identification for one crop could also be used for disease identification in similar crops without requiring it to build the model from scratch.

This approach could be implemented on paddy or rice as their demand is increased every year and their production have to be increased per hectare as lots of fertile land is lost due to urbanization and their production is affected due to floods and cyclones. Also the paddy or rice suffers from various diseases caused by various microbes which negatively affect their production. In this paper we discusses about the various factors affecting the paddy production and how modern day techniques like machine learning could be used to resolve them.

NEAT ALGORITHM IN GAME AI: AN IN-DEPTH STUDY ON DINO GAME IMPLEMENTATION

Dr. V. Selvakumar^{1*}, Aditya Bikram Chowdhuri ²

1* Assistant Professor, Department of Mathematics and Statistics, Bhavan's Vivekananda College of Science, Humanities & Commerce, Hyderabad, Telangana, India, drselva2022@gmail.com, ORCID ID:https://orcid.org/0000-0003-1337-1495

² BSc Honours Data Science Student, Department of Mathematics and Statistics, Bhavan's Vivekananda College of Science, Humanities & Commerce, Hyderabad, Telangana, India,

Abstract: This paper presents an in-depth study of the Dino Game, an AI-driven project that uses the NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The project demonstrates the application of evolutionary algorithms in developing intelligent game AI. Through a detailed analysis of the game mechanics, NEAT algorithm, and configuration parameters, this study showcases the implementation and effectiveness of evolutionary AI in interactive entertainment.

Keywords: Artificial Intelligence, Dino Game, Mutations, NEAT Algorithm, Neural Network

A Review on Cloud Computing Application and Challenges in Current Scenario

¹Sandeep Kumar, ²Krishna Nandan Singh, ³Dr. Ashish Saini, ⁴Md. Saheb, ⁵Dr. Amrita Kumari, ⁶ Amit Kumar

^{1,2,4} B.Tech Student, Department of Computer Science & Engineering, Quantum University, Roorke, Haridwar 3,5,6Asst. Prof., Department of Computer Science & Engineering, Quantum University, Roorke, Haridwar

Abstract: Cloud computing is the on-demand or pay-per-use of resources including servers, networks, and storage that are made available via the internet. While cloud computing is helping the IT sector, there is still a need for more satisfactory research and development in this field. Our contribution to this study is to provide basic information of cloud computing. This work clarifies the concept of cloud computing and highlights applications, characteristics of cloud models and challenges faced in the cloud environment.

Keywords: Cloud Computing, SaaS, PaaS, IaaS, RaaS

Ensemble Technique in Neural Network for Wheat Identification and Classification: A Review

¹Shivani Rastogi, ²Dr. Ranjana Sharma

¹Research Scholar ,TMU Moradabad ²Associate Professor TMU, Moradabad

E-mail: ¹shivani.rastogi15@gmail.com

¹Mob.:+91-8979693551

²ranjana.computers@tmu.ac.in

²Mob.:+91-8430835099

Abstract: Wheat, as a vital grain for global food security, necessitates precise identification of its type and quality. This is crucial for selective breeding programs and effective grain management. Recent research has explored the integration of ensemble modeling techniques with neural networks to enhance wheat identification accuracy from images. In this comprehensive review, we delve into the fundamentals of neural networks and popular ensemble architectures, including boosting, bagging, and stacking. Ensemble techniques exhibit strengths such as improved model performance, robustness, and enhanced generalization ability compared to individual neural networks. We systematically analyze existing literature on ensemble neural networks applied specifically to wheat identification, considering various data sources. Challenges and advantages of neural ensembles are discussed, along with practical implications for agricultural researchers and data scientists. Additionally, we highlight promising future directions, including multi-modal data fusion and deep neural network ensembles. This paper provides useful insights for agricultural researchers and data scientists applying ensemble modeling for automated classification tasks. Ongoing developments in multi-model data fusion and deep neural network ensembles are highlighted as promising future directions for performance enhancement.

Keywords: Wheat, identification, classification, ensemble learning, neural networks, deep learning.

Blockchain Innovations: Navigating Future Trends and Developments

¹Amit Saxena, ²Saurabh Srivastava, ²Sundeep Kumar Awasthi

¹Department of Computer Science & Engineering, Moradabad Institute of Technology, India ²Department of Computer Science, Swami Shukdevanand Post Graduate College, India

¹er.amitsaxena79@gmail.com, ²srbh.spn@gmail.com, ³sndp67@rediffmail.com

Abstract: Blockchain innovation has developed as a transformative constrain, advertising decentralized arrangements to different businesses and angles of society. This chapter delves into the future patterns and improvements in blockchain advancement, pointing to supply perusers with bits of knowledge into exploring the advancing scene of this groundbreaking innovation. It examines the new developments influencing blockchain technology, such as supply chain management, decentralized finance (DeFi), non-fungible tokens (NFTs), and digital currencies issued by central banks (CBDCs). The chapter also covers the potential and problems that come with blockchain innovation, including privacy issues, legal concerns, scalability, and interoperability. It gives readers a thorough grasp of the developing blockchain ecosystem by examining potential fixes and developments in various fields. Through an exploration of upcoming trends and advancements in blockchain innovation, readers will get significant knowledge about fully utilizing this revolutionary technology to stimulate creativity and generate fresh prospects in the digital economy.

Case Studies: Real-World Blockchain Implementations

¹Saurabh Srivastava, ¹Amit Saxena, ²Sundeep Kumar Awasthi

¹Department of Computer Science & Engineering, Moradabad Institute of Technology, India ²Department of Computer Science, Swami Shukdevanand Post Graduate College, India

1srbh.spn@gmail.com, 2er.amitsaxena79@gmail.com, 3sndp67@rediffmail.com

Abstract: Blockchain technology, initially conceptualized as the underlying infrastructure for cryptocurrencies, has evolved into a versatile tool with applications across various industries. This study presents a comprehensive analysis of real-world blockchain implementations, focusing on case studies that highlight the practical benefits, challenges, and innovative uses of this technology. By examining diverse sectors such as finance, supply chain management, healthcare, and public administration, the study showcases how blockchain's features such as decentralization, transparency, immutability, and security are leveraged to enhance operational efficiency, trust, and data integrity.

Technical challenges include scalability, interoperability, and energy consumption, while regulatory and organizational barriers encompass legal uncertainties and resistance to change. Despite these obstacles, the successful implementations underscore blockchain's capability to foster innovation and efficiency.

This study underscores the importance of ongoing research, cross-sector collaboration, and adaptive regulatory frameworks to fully harness blockchain's potential. It serves as a resource for stakeholders aiming to understand and implement blockchain solutions, providing insights into best practices and strategic considerations for future deployments.

Evaluating Machine Learning Models for Effective Diabetes Detection

¹Raj Kashyap, ²Saurabh Srivastava

^{1,2} Department of Computer Science & Engineering, Moradabad Institute of Technology, India

¹raj@gmail.com, ²srbh.spn@gmail.com

ABSTRACT: Diabetes is immedicable disease where the body either doesn't make enough insulin or can't use the insulin it produces properly. Diabetes is a big health issue worldwide, affecting many people because of things like getting older, genetic, being overweight, and not living a good and healthy lifestyle. According to WHO in the year between 2000-2019 rate of the diabetes is increased by 3%. Diabetes is major cause of heart disease, blindness, and kidney problems. Hospital use historic data to figure out and treat diabetes, but sometimes they need better ways to do it.

Machine learning is a rapidly developing area within data science, focusing on how machines can learn from past experiences. The objective of this study is to be creating a machine learning model that can predict diabetes earlier for patients by comparing various machine learning techniques. Some algorithms include Support Vector Machine, K Nearest Neighbor, and Random Forest are employed. We check how good each algorithm is at predicting diabetes, and then we pick the one that's the best at it to use for making predictions.

Android Malware Detection Using Machine learning

Amay Bhatnagar¹, Mahendra Singh Sagar², Priyanka Goel³ Yamini Yadav⁴, Sherine K. Davasia⁵

Department of Computer Science Engineering, M.I.T Moradabad, Moradabad, India

¹Amaybhatnagar13@gmail.com ²mahendra.singh12jan@gmail.com ³priyanka070goel@gmail.com ⁴Yaminiyadav583@gmail.com ⁵davsherine@gmail.com

Abstract: Android operating systems have become a prime target for malware due to their widespread usage. Traditional antivirus software struggles to keep up with the rapid evolution of malware, necessitating more dynamic and adaptive solutions. This paper presents a novel approach to Android malware detection using machine learning techniques. We propose a system that extracts meaningful features from Android applications and employs various machine learning algorithms to classify these applications as benign or malicious.

Our system leverages the strengths of both static and dynamic analysis for feature extraction. The machine learning models are trained and tested using a large dataset of both benign and malicious application. Various classification techniques such as Logistic Regression, Decision Tree, and Naïve Bayes applied to test the efficiency of classification machine learning algorithms. Experimental results demonstrate that our system can effectively detect Android malware with high accuracy, precision, and recall. This research contributes to the ongoing efforts in cyber security, providing a robust and scalable solution to Android malware detection.

Quantitative metrics including accuracy, precision, and computational efficiency are rigorously measured and analysed. Results demonstrate good accuracy rates across the respective dataset. In conclusion, Android Malware detection using Machine learning approach that compares various classification detection techniques that are logistic regression, decision tree, Naïve Bayes to provide comprehensive protection against evolving threats and tell us about the performance of those algorithms respectively.

Keywords— Classification, Logistic Regression, Dtree, Naïve Bayes, Machine Learning, Malware

Vehicle Detection with Deep Learning Based Approach: A Review

Muskan Jain ¹ Dr. Ranjana Sharma²

Research Scholar¹ Student, Teerthanker Mahaveer University, Moradabad (U.P.), India Associate Professor², Teerthanker Mahaveer University, Moradabad (U.P.), India

Email: muskanjain.scholar@tmu.ac.in¹, Ranjana.computers@tmu.ac.in²

Abstract: The essential role of vehicle detection and tracking technology in the field of intelligent transportation management (ITMS), This essay suggests an innovative approach tailored to enhance accuracy, particularly for small target vehicles. The focal point of this methodology is the introduction of the vehicle detection model YOLOv5-NAM, an improved a variant of the YOLOv5s model achieved through the integration of The attention module based on normalization (NAM). Notably, this augmentation yields a notable 1.6% improvement in mean Average Precision compared to the original YOLOv5s model [1].

Additionally, the paper introduces a real-time tracking technique for tiny target automobiles, labeled as JDE-YN, leveraging using the YOLOv5-NAM model as the car sensor. This tracking method incorporates feature extraction into the joint training prediction head, resulting in a significant 0.9% enhancement in Multiple Object Tracking Accuracy (MOTA) compared to the original JDE technique.

The study employs algorithms for primary-stage target detection, specifically utilizing the SSD and YOLOv3 algorithms. Utilizing image data from an road vehicle dataset available for public use, the models are trained and subsequently compared for their effectiveness in vehicle detection. This analysis extend beyond vehicle detection, impacting areas such as semantic segmentation and target tracking, and applications in driverless operation.

Keywords: Vehicle Detection, Accuracy, YOLOv3, YOLOv5, MOTA, MOTP.

A Comprehensive Study on the Design and Analysis of Comparison – Based Sorting Algorithms

Aryan Sharma¹, Mahendra Singh Sagar²

¹Department of Computer Science & Engineering (AI & ML), Moradabad Institute of Technology, Moradabad, India

²Department of Computer Science & Engineering (AI & ML), Moradabad Institute of Technology, Moradabad, India

> ¹aryan070sharma@gmail.com ²mahendra.singh12jan@gmail.com

Abstract: This technical paper gives you a comprehensive study on the design and analysis of four distinct algorithms. The algorithms include 'Insertion Sort', 'Selection Sort', 'Merge Sort', 'Quick Sort'. Each one of the algorithms has been chosen for their unique and relevance on the target problem. The primary goal of this paper is to compare the performance, efficiency, and scalability of these algorithms which includes time and space complexity. The results obtained from the comparative analysis shows the valuable guidance to practitioners and researchers seeking to make informed algorithmic choices. The perception obtained from this research aim to inform future algorithmic development and deployment strategies in order to achieve boost performance and efficiency.

Driver Sleep Detection and Alarming System

¹Deepak Jain, ²Anchit Kashyap, ³Tushar, ⁴Prashant Kumar, ⁵Dr. Alka Verma, ⁶Rahul Vishnoi

1,2,3 Student, ECE Department, TMU, Moradabad, 4,5 EEC Department TMU, Moradabad

¹Deepak.034697@tmu.ac.in, ²anchit34084@gmail.com, ³tusharvidoriya0408@tmu.ac.in ⁴prashant.engineering@tmu.ac.in, ⁵dralka.engineeringtmu.ac.in, ⁶rahulv.engineering@tmu.ac.in

ABSTRACT: In our fast-paced lives, maintaining alertness while driving can be challenging amidst hectic schedules. Envision a scenario where you're driving home fatigued after a demanding day, and drowsiness sets in unexpectedly. Such situations pose a grave risk of accidents with potentially severe consequences. In this paper we have Introduced a cutting-edge safety innovation – the Driver Sleep Detection and Alarming System. This intelligent device serves as a vigilant guardian, issuing timely warnings when signs of drowsiness emerge, effectively preventing accidents and safeguarding lives. Particularly beneficial during extended journeys and late-night drives, this system employs an infrared sensor. Upon detecting closed eyes for more than 3 seconds, it triggers an audible alert to rouse the driver. Should drowsiness persist beyond 5 seconds, the system takes immediate action by automatically halting the vehicle. This affordable solution is geared towards minimizing accidents, presenting an invaluable contribution to enhancing road safety.

KEYWORDS: IR Sensor Module, Vehicle, Relay