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Abstract 
This current research paper explores the heat transfer phenomenon of a second-grade fluid flowing past a linear 

shrinking sheet. By employing similarity transformations, the governing set of boundary layer partial differential 

equations is transformed into a set of non-linear ordinary differential equations. The numerical solution to this 

problem is obtained using the widely utilized Runge-Kutta method in conjunction with a shooting technique. 

Detailed graphical representations are presented, showcasing the calculated results for skin friction coefficient, 

temperature profiles, and local rate of heat transfer, for selected parameter values. Intriguingly, it is observed that 

under specific parameter conditions, a dual solution exists. Furthermore, an interesting finding emerges, 

indicating that an increase in the viscoelastic parameter leads to an augmentation in the thickness of both the 

momentum and thermal boundary layers, irrespective of whether it is an upper or lower branch solution. 
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Introduction 
Several technical procedures include boundary layer flow across a stretched surface. Such 

situations arise in a variety of sectors, including paper manufacturing, polymer processing, glass 

or fiber sheet manufacture, textile manufacturing, and many more. Initially Sakiadis [1,2] work 

on flow over a stretching sheet. He discussed boundary layer flow of steady viscous fluid over a 

linear sheet. Many of researchers doing enhancement their wok and find different valuable results 

in different conditions regularly.  Vijendra Singh and Shweta Agarwal [3]discuss the heat transfer 

for second grade fluid and second order fluid on a stretching sheet. In their work they take the 

sheet which is exponentially stretched and, in their observation, the thermal conductivity is taken 

variable. Some researchers found that flow over a shrinking sheet has also useful applications in 

many technological processes such as packaging of bottles and food, to make computer and 

transistors, making high performance wire, in textile industry and many others [4-11].Recently, 

Van Gorder and Vajruvelu [12] found the dual solution for flow of a second grade fluid past a 

shrinking sheet with magnetic effect. The author’s work is limited to flow of the fluid. Previous 

studies have not explored the heat transfer phenomenon associated with the flow over a shrinking 

sheet combined with a linear stretching sheet. A recent investigation conducted by Fatima and 

Hayder [13] focused on examining the flow and heat transfer characteristics within a multi-mini 

channel heat sink. Their study specifically investigated the impact of channel configuration on 
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fluid flow and heat transfer. In contrast, the present study aims to calculate the heat transfer 

solution for a second-grade fluid flowing over a shrinking sheet. 

 

Problem formulation 
Let's examine the characteristics of a steady two-dimensional boundary layer flow involving a 

second-grade fluid with electrical conductivity over a shrinking sheet positioned in the y = 0 

plane. To introduce a magnetic influence in the x-direction, a vertical uniform magnetic field with 

an intensity of B0 is imposed along the y-axis. Let us consider that u is the velocity component in 

x axis and v is the velocity component in its perpendicular direction, 𝜎𝑡 is thethermal 

conductivity and𝜎𝑒is the electric conductivity of the fluid,𝜇 is the viscosity and sp is the specific 

heat of the fluid. The elastic parameter𝜅 < 0for the second grade fluid [14], E is the heat 

generation/absorption, TV is the temperature at any time and Tab is the absolute temperature 

which is consider as constant. The conservation equations for mass and momentum, governing 

the flow and heat transfer process, can be stated as under the standard boundary layer 

assumptions are: 
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The appropriate boundary conditions for velocity are given by: 

𝑢 = 𝑢𝑙(𝑥) = −𝑏𝑥, 𝑣 = 𝑣𝑙(𝑥),   at y = 0      (4) 

𝑢 → 0,
𝜕𝑢

𝜕𝑦
→ 0 as 𝑦 → ∞        (5) 

and the appropriate boundary conditions for temperature are given by 

𝑇𝑣 = 𝑇𝑙(𝑥) = 𝑇ab + 𝐶(𝑥)𝑚 at y = 0       (6) 

𝑇𝑣 → 𝑇ab  as 𝑦 → ∞        (7) 

where b is a constant rate of linear stretching or shrinking (for shrinking b > 0 and for stretching b 

< 0), B is constant, 𝑇𝑙 is the wall temperature.For m = 0 thermal boundary conditions become 

isothermal. 

The stream function ψ satisfied the equation of continuity. The dimensionless stream function 

g(𝜂)  is defined as[15] 

𝑔(𝜂)  = 𝜓 𝑥√𝑏𝜈⁄ . , 𝜂 = 𝑦√
𝑏

𝜈
      (8) 

where 𝜂 is the similarity variable.         

𝜃(𝜂) =
𝑇𝑣−𝑇𝑎𝑏

𝑇𝑙−𝑇ab
         (9) 

Using equations (8) and (9) in equation (2) and (3) we get Momentum and energy equations as, 

         

𝑔‴ − (𝑔′)2 + 𝑔. 𝑔″ = 𝐵𝑔′ + 𝛼[2𝑔′. 𝑔‴ − 𝑔𝑔′′′′ − 𝑔″. 𝑔″. ]  (10)    

      

𝜃″ + 𝑃𝑑. 𝑔 . 𝜃′ − 𝑚. 𝑃𝑑 . 𝑔′ . 𝜃 + 𝑃𝑑 𝜆 𝜃 = 0     (11) 
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Here differentiation with respect to η is represented by prime, B=
𝜎𝑒𝐵0

2

𝑏𝑑𝜌
is the magnetic parameter, 

𝛼 =
𝑘𝑏

𝜈
is the viscoelastic parameter which is less than zero for second grade fluid, 𝜆 =

𝐸

𝑑𝜌𝑠𝑃
is 

internal heat generation/absorption parameter and Pd is Prandtl number. 

The velocity components and boundary conditions become, 

𝑢 = 𝑏𝑥𝑔′          (12) 

𝑣 = −√𝑏𝜈𝑔           (13) 

𝑔(0) = 𝑠′  ,𝑔′(0) = −1  ,𝜃(0) = 1     (14) 

𝑔′(∞) → 0 , 𝑔′′(∞) → 0, ,𝜃(0) → 0      (15) 

 

 

where 𝑠′ =
−𝑣𝑙 

√𝑏𝜈
 is the mass transfer parameter. Using the above boundary conditions in 

momentum equation and heat transfer equation, we obtain the analytical solution of these 

equations in the form 

𝑔(𝜂) = 𝑠′ −
(1−𝑒−𝛽𝜂)

𝛽
        (16) 

where is a real positive root of algebraic equation 

𝛼𝑠′𝛽3 − 𝛽2(1 + 𝛼) − 𝑠′𝛽 + 𝐵 − 1 = 0     (17) 

 

Equation (16) provides the velocity profile, which is 𝑔′(𝜂) = −𝑒−𝛽𝜂.Skin friction coefficient and 

the local Nusselt number, which are proportional to the numbers 𝑔′′(0)and −𝜃′(0) respectively, 

are the major physical quantities of relevance. The parameter for skin friction is 𝑔′′(0)=𝛽.It 

should be mentioned that Cortell [4] examined the relationship between the skin friction 

parameter and the entrainment velocity  𝑔(0) as function of the mass transfer parameter s’ 

quantitatively for the two-dimensional shrinking described here. It is evident from the generic 

solution form (16) that when exponential solutions of the type (10) exist, the skin friction 

parameter and entrainment velocity parameter are connected as 𝑔(0) = 𝑠′ −
1

𝛽
= 𝑠′ −

1

𝑔′′(0)
for 

the flow of a second-grade fluid over a shrinking sheet. 

 

Numerical procedure  
Using the Runge- Kutta method and the shooting approach, the set of equations (10) and (11) 

under the boundary conditions (14) and (15)can be numerically solved. Let  

g=Y1, g′=Y2, g′′=Y3, g′′′=Y4,𝜃=Y5,𝜃′=Y6     (18) 

Y′1=Y2,Y′2=Y3 , Y′3=Y4,        (19) 

 Y′4=
1

𝛼𝑌1
(−𝑌4 − 𝑌1𝑌3 + 𝑌2

2 + 𝐵𝑌2 + 2𝛼𝑌2𝑌4 − 𝛼𝑌3
2)   (20) 

Y′5=Y6          (21) 

𝑦6
′ = −𝑃𝑑𝑌1𝑦6 + 𝑚𝑃𝑑𝑌2𝑦5 − 𝑃𝑑𝜆𝑌5      (22) 

With the following initial conditions, 

Y1(0) =s′,Y2(0)=-1, Y3(0)=w1 , Y4(0)=w2 , Y5(0)=1 , Y6(0)=w3  (23) 

We only have two initial conditions, 𝑔(0), 𝑔′(0) on 𝑔(𝜂), and one initial condition,𝜃(0) on 𝜃(𝜂) 

however we need six initial conditions to solve this system of equations. The unexplained 

beginning conditions Y3(0), Y4(0), and Y6(0) in equation (23) are assumed to be w1, w2, and w3, 

respectively, in the shooting technique. Equation (20) is then numerically integrated as an initial 

valued problem with value set to 𝜂∞. The correctness of the a priori anticipated missing starting 
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condition is then validated by comparing the dependent variable's computed value at 𝜂∞  to its 

provided value there.  

 If there is a difference, the procedure must be repeated while obtaining a better value for the 

missing beginning conditions. For convergence criterion of the order 10−7, a step size of 𝛥𝜂 = 

0.001 was determined to be sufficient. A written Programme using the symbolic and 

computational computer language MATLAB performed the computations. We may thus derive 

numerical conclusions in regimes where the flow does not have perfect solutions of the form (16). 

We are able to fully categories the solutions to the heat transfer issue using the numerical 

solutions given here. 

 

Result and discussion 
 

To obtain numerical solutions for the governing ordinary differential equations of momentum and 

heat transfer (equations 10 and 11), the widely acclaimed Runge-Kutta method in conjunction 

with the shooting technique is employed. The boundary conditions (equations 14 and 15) are 

applied to solve the aforementioned equations. The figures presented (Figs. 1 through 9) offer 

visual representations of the relationship between various factors, including the shear stress at the 

wall (g''(0)), velocity (g'(η)), temperature field (θ(η)), and the local rate of heat transfer at the 

surface or local Nusselt number (-θ'(0)). These relationships are explored in relation to 

parameters such as the magnetic parameter (B), mass transfer parameter (s'), Prandtl number (Pd), 

viscoelastic parameter (α), variable wall temperature parameter (m), and internal heat 

generation/absorption parameter (E). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.s' (Mass suction parameter) vs. the g″ (0)(Skin friction coefficient) when α = -1. 
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Fig. 2.B (Magnetic parameter) vs. the g ″ (0) (Skin friction coefficient)when α = -1. 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.α (Viscoelastic parameter)vs. 

the g ″ (0)(Skin friction coefficient)when 

(a)B= 1.5, (b) B= 0.5. 
 

 
 

 

Fig. 4. (a) g '(η)(Dual velocity profiles) and (b) θ (η) (Dual temperature profiles) for different values of B(magmatic parameter) with  α = 

-1, m = 0, s' = 2, E = -0.5, Pd = 1 
 

 
 

Fig. 5. (a) g '(η)(Dual velocity profiles) and (b) θ (η) (Dual temperature profiles) for different values of s'  (mass suction parameter) with 

B= 0.5, m= 0,α= -1, Pd = 1, E = -0.5 
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Fig. 6. (a) g '(η) (Dual velocity profiles) and (b) θ (η) (Dual temperature profiles )for different values  with 

s' = 2, m = 0, Pd = 1,B= 0.5, E = -0.5 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.7. θ(η) (Dual temperature 

profiles) fordifferent values of Pd 

with s' = 2,α = -1, m = 0,B= 0.5, E= 

-0.5 

 

Fig.8. θ(η) (Dual temperature 

profiles) for different values of m 

with s'= 2,α = -1, Pd= 1, B = 0.5, E 

= -0.5 

 
 

Fig. 9.θ(η)(Dual temperature profiles)for different values of E with s'= 2, B= 0.5, α= -1, m = 0, Pd = 1 
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Conclusions 

 

The study yields the following conclusions: 

 

1. The first solution exhibits a thinner thickness of the velocity boundary layer compared to the second 

solution, resulting in a corresponding decrease in the thickness of the thermal boundary layer. 

2. Dual solutions have been observed for both the velocity field and temperature fields under certain 

parameter values. 

 

3. In the context of the examined scenario, an interesting observation arises: when the magnitude of the |α|, 

the parameter of visco-elasticity increases, both the thickness of the velocity boundary layer and the 

thermal boundary layer simultaneously expand for the upper as well as for the lower branch solutions. 

4. The thermal boundary layer thickness is positively influenced by an increase in the wall temperature 

parameter r. 

5. The thermal boundary layer thickness increases when the value of the wall temperature parameter (r) 

increases. 

 

I believe that this endeavor will act as a catalyst for forthcoming experimental research. 
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