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With the advancements in biomedical imaging applications, it becomes more important to provide potential results for searching
the biomedical imaging data. During the health emergency, tremors require efficient results at rapid speed to provide results to
spatial queries using the Web. An efficient biomedical search engine can obtain the significant search intention and return
additional important contents in which users have already indicated some interest. The development of biomedical search engines
is still an open area of research. Recently, many researchers have utilized various deep-learning models to improve the per-
formance of biomedical search engines. However, the existing deep-learning-based biomedical search engines suffer from the
overfitting and hyperparameter tuning problems. Therefore, in this paper, a nondominated-sorting-genetic-algorithm-III-
(NSGA-III-) based deep-learning model is proposed for biomedical search engines. Initially, the hyperparameters of the proposed
deep-learning model are obtained using the NSGA-III. Thereafter, the proposed deep-learning model is trained by using the tuned
parameters. Finally, the proposed model is validated on the testing dataset. Comparative analysis reveals that the proposed model

outperforms the competitive biomedical search engine models.

1. Introduction

The advancements in biomedical imaging applications lead
to the challenge of providing the significant results for
searching the biomedical imaging data. During the health
emergency, tremors require efficient results at rapid speed to
provide results to spatial queries using the Web [1]. Search
engines which allow obtaining specific medical contents
along with the complementary and different details would
considerably help biomedical researchers [2]. An efficient
biomedical search engine can obtain the significant search
intention and return additional important contents in which
users have already shown some interest [3, 4].

Numerous biomedical search engines have been
implemented such as inverted index and Boolean retrieval
[5-8]. But, index sizes are becoming exponentially large as
the number of biomedical contents is increasing at a rapid

rate [5]. Thus, ranking of biomedical contents has been
achieved using their respective retrieval frequency [8]. It has
been found that to compute the results when the biomedical
queries have minimum similarity scores is still an open area
of research [9-11].

Essie is a well-known biomedical search engine which is
providing services to various websites at the National Li-
brary of Medicine. It is a phrase-based search engine with
notion and term query expansion and probabilistic rele-
vancy ranking. It has proven that a judicious group of
exploiting document structure, phrase searching, and con-
cept-based query expansion is a beneficial method for data
retrieval in the biomedical field [12].

Bidirectional Encoder Representations from Trans-
formers (BERTs) has shown good advancement in the field
of biomedical search engines. In precision medicine, cor-
responding patients to appropriate investigational support
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or probable therapies is a difficult job which needs both
biological and clinical information. To resolve it, BERT-
based ranking models can provide fair comparisons [13]. A
computer-based query recommendation model was
designed which recommends semantically interchangeable
terms based on an initial user-entered query [14, 15].

The typical view of biomedical search engine is repre-
sented in Figure 1. Initially, potential features of biomedical
images are obtained. Thereafter, similarity score is com-
puted. A prediction model is then utilized to compute the
image index. Finally, the obtained class wise results are
returned to the users.

The primary contributions of this paper are as follows:

(1) An NSGA-III-based deep-learning model is pro-
posed for biomedical search engines

(2) The hyperparameters of the proposed deep-learning
model are obtained using the NSGA-III

(3) The proposed deep-learning model is trained by
using the tuned parameters obtained from NSGA-III

(4) Finally, the proposed model is validated on the
testing dataset.

The remaining paper is organized as follows: The related
work is presented in Section 2. Section 3 presents the
proposed biomedical search engine. Comparative analysis is
discussed in Section 4. Section 5 concludes the paper.

2. Related Work

Hsieh et al. [16] proposed a semantic similarity approach by
utilizing the page counts of two biomedical contents ob-
tained from Google AJAX web search engine. The features
were extracted in co-occurrence forms by considering two
provided words. Support vector machines (SVMs) were
utilized for classification purpose. Mao and Tian [17]
utilized TCMSearch as a semantic-based search engine for
biomedical images. It has shown good results for bio-
medical contents. Wang et al. [3] designed an ontology-
graph-based web search engine named as G-Bean for
evaluating biomedical contents from the MEDLINE da-
tabase. The multithreading parallel approach was utilized to
obtain the document index to address. Kohlschein et al.
[18] studied that ViLiP can be efficiently utilized to search
the contents in PubMed. ViLiP was further improved using
NLP-based semantic search engine for obtaining better
drug-related contents within a query. Depending upon the
linguistic annotations, significant drug names can be
obtained.

Tsishkou et al. [19] designed a TTA10 approach which
stores biomedical data in hierarchical fashion. Logarithmic
complexity was utilized to retrieve a huge data repository.
AdaBoost was utilized to integrate independent search
results to obtain efficient results. Mao et al. [1] designed a
prototype model of subject-oriented spatial-content-based
search engine (SOSC) for critical public health hazards. It
can obtain Web contents from the Internet, find the Web
page database, and obtain spatial content during pandemic
from these Web pages. Boulos [20] designed a GeoNames-
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powered PubMed search which has an ability to handle
these problems. The geographic ontology can utilize po-
tential words to obtain the significant results from the
PubMed. Al Zamil and Can [21] improved the contextual
retrieval and ranking performance (CRRP) with minimal
input from researchers. The performance was evaluated
using the retrieval procedure in terms of topical ranking,
precision, and recall. Grandhe et al. [22] designed an as-
cendable search engine (ASE) for biomedical images. Re-
searchers can select a region of interest iteratively to
evaluate the corresponding region from the images. An
efficient cluster-based engine was designed to reduce the
content retrieval time. Mishra and Tripathi [23] proposed a
vector- and deep-learning- (VDP-) based biomedical
search engine model. The degree of similarity was com-
puted by integrating the vector space and deep-learning
model.

The implementation of efficient biomedical search en-
gines is still a challenging issue [24]. Recently, many re-
searchers have utilized various deep-learning models to
improve the performance of biomedical search engines [25].
However, the existing deep-learning-based biomedical
search engines suffer from the overfitting and hyper-
parameter tuning problems.

3. Proposed Model

This section discusses the proposed biomedical search en-
gine. Initially, the deep-learning model is discussed.
Thereafter, the tuning of the deep-learning model is achieved
using the NSGA-IIL

3.1. Deep Convolutional Neural Network. The deep con-
volutional neural network (CNN) is widely accepted as a
classification problem, and many researchers have utilized it
in the field of search engines. Figure 2 shows the deep-
learning-model-based biomedical search engine. It utilizes
numerous convolution filters to extract the potential
features.

We assume a single channel which is mathematically
computed as

c =[n,ny,ns,...,0,). (1)

Here, ce P™. r shows the dimension of every input
factor. m represents the number of images. During con-
volution operation, a filter u € P* s utilized to extract the
potential features as

a, = R(u-ny +4d), (2)

where d € PP represents a bias. ny,, ., is the integration of
My . > M- R shows an activation function. The filter u
approaches {n ,n,. ;. 1,...,0, j..,}. Thus, feature map
can be computed as

a=[apay ..., 0, ) (3)

Maxpool is applied on a to compute peak value as
a = max{A}. It shows the final feature obtained using u.
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FiGURE 1: Typical view of biomedical search engine.
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FIGURE 2: Deep-convolutional-neural-network-based biomedical search engine.
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TaBLE 1: Nomenclature of NSGA-III.
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Group of o', y"
Random group of solutions
Optimal CNN
Convert random solutions to initial parameters of CNN

Optimal CNN
Elite population

The proposed model evaluates numerous feature groups
by utilizing various filters with different sizes. The computed
feature groups returns a vector as

v=[a,a,...,a, (4)

where z shows the number of filters. Softmax (zy) is utilized
to evaluate the prediction probability as

j=zp(w-v+d). (5)

We assume a training set (ab, jb), where jb €{l,2,...,n}
shows the similarity of the biomedical image query for
search engine A’, and the prediction probability of the
proposed model is j, € [0,1] for each label t € {1,2,...,n}.
The computed error can be defined as

(4% 1) = - Y i) = t}log<7f ) (6)
1

t=

Here, n represents the labels of A’. if"} shows an indi-
cator and if{j® =t} = 1 if j* = ¢, if{j® =t} = 0 otherwise.
The gradient descent is then utilized to update the deep-
learning variables.

3.2.  Nondominated  Sorting  Genetic  Algorithm-III.
Nondominated sorting algorithm-IIT (NSGA-III) [26] is
widely accepted to solve numerous engineering applications.
Recently, many researchers have utilized NSGA-III to solve
hyperparameter tuning issues with deep-learning models
[9, 11, 27].

The nomenclature of NSGA-III is demonstrated in Ta-
ble 1. The generation of the initial population is represented
in Algorithm 1. Initially, the random population is com-
puted. The computed solutions are then encoded to the
initial attributes of CNN.

NSGA-III- and CNN-based biomedical search en-
gines are discussed in Algorithm 2. The random-pop-
ulation-based CNN models are trained on the chunk of
biomedical dataset. Fitness of the computed CNN models
is then evaluated. Solutions are then divided into dom-
inated and nondominated groups. Crossover and mu-
tation operators are further employed to compute the
children. Nondominated sorting () is implemented to sort
the nondominated solutions. Based upon the termination
criteria, the tuned parameters of CNN models are
returned.

t(w,x) decomposes random individual (w,y) to initial
parameters of the CNN model.

4. Performance Analysis

The proposed biomedical search engine is implemented on
MATLAB 2019a with the help of deep-learning and image
processing toolboxes. The proposed and the existing models
are tested on the biomedical search engine dataset. The
proposed model is compared with the competitive models
such as TCMSearch [17], SVM [16], G-Bean [3], TTA10 [19],
ViLiP [18], SOSC [1], GeoNames [20], CRRP [21], ASE [22],
and VDP [23]. To compute the performance of the NSGA-
III-based CNN model, median and variation values (i.e.,
median +IQR x 1.5) are computed. 70% of biomedical
dataset is used for building the model. 15% of the dataset is
used for validation purpose. Remaining 15% is used for
testing purpose.

The training and validation loss analysis of the NSGA-
III-based CNN model are represented in Figure 3. It clearly
shows that the loss difference between training and vali-
dation is significantly lesser; therefore, the NSGA-III-based
CNN model is least affected from the overfitting issue.
Additionally, the loss approaches towards —60 and con-
vergence during the 92" epoch. Thus, the proposed model is
trained efficiently on the biomedical images.

Training and testing analysis of the NSGA-III-based
CNN model are depicted in Tables 2 and 3. Specificity, area
under curve (AUC), sensitivity, f-measure, and accuracy
metrics have been utilized to evaluate the performance of the
NSGA-III-based CNN model over competitive models such
as TCMSearch [17], SVM [16], G-Bean [3], TTA10 [19],
ViLiP [18], SOSC [1], GeoNames [20], CRRP [21], ASE [22],
and VDP [23]. It has been observed that the proposed model
outperforms the competitive models. The bold indicates the
highest performance of biomedical search engines. Com-
parative analysis reveals that the proposed model outper-
forms the competitive biomedical search engine models in
terms of specificity, AUC, sensitivity, f-measure, and ac-
curacy by 1.5828%, 1.8372, 1.8328, 1.4838, and 1.4828,
respectively.

The comparative analysis of the NSGA-III-based CNN
model with the state-of-the-art approaches is depicted in
Table 4. It has been observed that the NSGA-III-based CNN
model achieves significantly better results than the existing
web search engines.
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w'— Optimal CNNs.
"ty s s -5t}
%'« Evaluate CNN on optimal CNNs.
X”(—l//%(—{l ((L)’,X”), ! (a)”,X”)}
while v' = v do
L Consider CNN M € v with maximum (p;/y;) performance
X:/ (_)(,H U {L}
X —x.{L}
If (', x")isnotdominated by (w”,¥") then
E—&U (v, ¥}
else
E—Eu{(w",x"}
end if
end while
9« elect a random set of a x m solutions from & using a normal distribution
M — obtain a group of (1 —a) xm random solutions
eOeoru.u
return ¥

ALGORITHM 1: Initial population.

€, elect randomly 0.1m; solutions from given elite ¢;
for all T € €; do
(4, v)— decode T as hyper-parameters of gradient boosting
for M1 to SE, do
' — compute a random population based CNN in y
if (4',z)is notdominated by (u,v) then
(V)= (', v)
end if
end for
If (4,v)isnotdominated by any combinationine; then
€€ U{i(u,v)}
end if
for t—1 to SE, do
item« elect randomly an item € {1,2,..., H}
if item € v then
v v, {item}
else
v v U {item}
end if
if (4,v')is not dominated by any solution in¢; then
€€ Uft(u, )}
end if
end for
end for
if |e;| > m; then
€;< select m; solutions obtain from NSGA-III
end if

ALGORITHM 2: NSGA-based CNN for biomedical search engine.
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FIGURE 3: Loss analysis of the NSGA-III-based CNN model.

TaBLE 2: Training analysis of the NSGA-III-based CNN model.

Model Specificity AUC Sensitivity F-measure Accuracy

TCMSearch [17] 78.69 + 1.48 78.56 + 1.68 78.39 +£1.45 78.67 £ 1.54 78.49 +1.52
SVM [16] 78.69 + 1.39 78.52 +1.42 78.54 +1.45 76.75 + 1.33 78.68 +1.32
G-Bean [3] 77.65 +1.30 77.25 +1.49 77.76 £ 1.16 78.15 + 0.78 78.21 £ 0.72
TTA10 [19] 78.18 + 0.79 78.19 + 0.87 78.32 + 0.66 77.26 + 0.54 77.31 £ 0.82
ViLiP [18] 78.28 + 0.71 77.39 + 0.58 78.31 + 0.48 78.45 + 0.56 78.34 + 0.35
SOSC [1] 78.45 + 1.15 78.46 +1.21 78.56 + 0.79 78.39 + 0.52 78.33 + 0.74
GeoNames [20] 78.69 + 0.48 78.68 + 0.43 78.46 + 0.49 78.76 + 0.79 78.54 + 0.76
CRRP [21] 78.46 + 0.46 78.72 + 0.55 77.46 + 0.43 78.53 + 0.42 78.57 + 0.55
ASE [22] 79.32 + 0.46 79.13 £ 0.39 79.21 + 0.49 49.30 + 0.39 79.29 + 0.49
CNN [23] 79.35 + 0.52 79.43 + 0.52 79.29 + 0.54 79.28 + 0.43 79.28 + 0.53
VDP [23] 79.53 + 0.52 81.11 £ 0.35 80.46 + 0.46 79.43 + 0.36 79.50 + 0.39
Proposed DCNN 83.79 + 0.46 83.71 + 0.79 83.35 + 0.51 83.69 + 0.50 83.35 + 0.52

TaBLE 3: Validation analysis of the NSGA-III-based CNN model.

Model Specificity AUC Sensitivity F-measure Accuracy

TCMSearch [17] 78.46 +1.10 78.79 £ 1.10 78.11 £ 1.76 78.31 + 1.61 78.12 + 1.71
SVM [16] 78.31 + 1.62 78.24 + 1.68 78.21 £ 1.59 78.42 +1.62 78.24 +1.73
G-Bean [3] 78.35 + 1.68 78.41 + 1.61 78.43 +1.69 78.50 +1.42 78.45 +1.53
TTA10 [19] 78.51 + 1.46 78.58 + 1.35 78.36 + 1.55 78.46 + 1.51 78.48 +1.31
ViLiP [18] 78.56 + 1.46 78.55 +1.33 78.60 + 1.43 78.54 +1.35 78.63 +1.35
SOSC [1] 77.32 +1.64 77.23 £ 1.34 77.59 + 1.63 77.13 +1.48 77.18 + 1.44
GeoNames [20] 77.46 + 1.54 77.43 +1.40 77.41 + 1.39 77.33 £1.25 77.35 +1.33
CRRP [21] 77.51 + 1.23 77.52 +1.44 77.32 £ 1.30 77.52 £ 1.21 77.32 £ 1.35
ASE [22] 77.46 + 0.68 77.72 £ 0.74 77.65 + 0.72 77.64 + 0.46 77.65 + 0.39
CNN [23] 77.68 +1.21 77.82 + 0.72 77.82 +1.33 77.70 £ 1.32 77.79 £ 1.32
VDP [23] 78.13 + 0.36 78.35 + 0.78 78.56 + 0.75 78.65 + 0.32 78.76 + 0.36

Proposed DCNN 81.56 + 0.78 81.52 + 0.74 81.15 £ 0.69 81.56 = 0.89 81.36 + 0.89
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TaBLE 4: Comparative analysis among the state-of-the-art Web search engines and the proposed model.
Search engine Specificity Sensitivity Accuracy
Corbis 78.81 80.36 77.69
Getty Images 78.69 78.39 80.65
Ditto 78.23 77.89 79.68
Yahoo 78.81 80.16 79.45
Picsearch 78.65 77.68 79.36
Ithanki 78.87 78.64 80.55
Web Seek 77.63 77.68 80.46
Google 79.57 80.38 78.62
Proposed model 81.39 82.51 81.23

5. Conclusions

This paper has proposed an efficient model for biomedical
search engines. It has been found that the deep-learning
models can be used to improve the performance of the
biomedical search engines. However, the existing deep-
learning-based biomedical search engines suffer from the
overfitting and hyperparameter tuning problems. Therefore,
an NSGA-III-based CNN model was proposed for bio-
medical search engines. Initially, the hyperparameters of the
proposed model were obtained using the NSGA-IIL
Thereafter, the proposed CNN model was trained by using
the tuned parameters. Finally, the proposed model is vali-
dated on the testing dataset. Comparative analysis reveal that
the proposed model outperforms the competitive biomed-
ical search engine models in terms of specificity, AUC,
sensitivity, f-measure, and accuracy by 1.5828%, 1.8372,
1.8328, 1.4838, and 1.4828, respectively.

Data Availability

The dataset used to support the findings of this study are
available from the corresponding author upon request.
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